Browse > Article
http://dx.doi.org/10.7732/kjpr.2017.30.3.323

Development of Microsatellite Markers and their Use in Genetic Diversity and Population Analysis in Eleutherococcus senticosus  

Lee, Kyung Jun (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
An, Yong-Jin (Ginseng & Medicinal Herb Experiment Station)
Ham, Jin-Kwan (Ginseng & Medicinal Herb Experiment Station)
Ma, Kyung-Ho (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
Lee, Jung-Ro (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
Cho, Yang-Hee (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
Lee, Gi-An (National Agrobiodiversity Center, National Institute of Agricultural Sciences, RDA)
Publication Information
Korean Journal of Plant Resources / v.30, no.3, 2017 , pp. 323-330 More about this Journal
Abstract
Eleutherococcus senticosus (Siberian ginseng) is an important medicinal tree found in northeast Asia. In this study, we analyzed the genome-wide distribution of microsatellites in E. senticosus. By sequencing 711 clones from an SSR-enriched genomic DNA library, we obtained 12 polymorphic SSR markers, which also revealed successful amplicons in E. senticosus accessions. Using the developed SSR markers, we estimated genetic diversity and population structure among 131 E. senticosus accessions in Korea and China. The number of alleles ranged from 2 to 11, with an average of 7.4 alleles. The mean values of observed heterozygosity ($H_O$) and expected heterozygosity ($H_E$) were 0.59 and 0.56, respectively. The average polymorphism information content (PIC) was 0.51 in all 131 E. senticosus accessions. E. senticosus accessions in Korea and China showed a close genetic similarity. Significantly low pairwise genetic divergence was observed between the two regions, suggesting a relatively narrow level of genetic basis among E. senticosus accessions. Our results not only provide molecular tools for genetic studies in E. senticosus but are also helpful for conservation and E. senticosus breeding programs.
Keywords
Eleutherococcus senticosus; Genetic diversity; Population structure; SSR;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Ali, A., Y.-M. Choi, D.Y. Hyun, S. Lee, S. Oh, H.-J. Park, Y.-H. Cho and M.C. Lee. 2016. EST-SSR based genetic diversity and population structure among Korean landraces of foxtail millet (Setaria italica L.). Korean J. Plant Res. 29:322-330.   DOI
2 Butcher, P.A., S. Decroocq, Y. Gray and G.F. Moran. 2000. Development, inheritance and cross-species amplification of microsatellite markers from Acacia mangium. Theor. Appl. Genet. 101:1282-1290.   DOI
3 Cavagnaro, P.F., D.A. Senalik, L.M. Yang, P.W. Simon, T.T. Harkins, C.D. Kodira, S.W. Huang and Y.Q. Weng. 2010. Genome-wide characterization of simple sequence repeats in cucumber (Cucumis sativus L.). BMC Genomics 11:569.   DOI
4 Cui H., K.T. Moe, J.W. Chung, Y.I. Cho, G.A. Lee and Y..J. Park. 2010. Genetic diversity and population structure of rice accessions from South Asia using SSR markers. Korean J. Breed. Sci. 42:11-22.
5 Davydov, M. and A.D. Krikorian. 2000. Eleutherococcus senticosus (Rupr. & Maxim.) Maxim.(Araliaceae) as an adaptogen: a closer look. J. Ethnopharmacol. 72:345-393.   DOI
6 Evanno, G., S. Regnaut and J. Goudet. 2005. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol. Ecol. 14:2611-2620.   DOI
7 Fang, J.N., A. Proksch and H. Wagner. 1985. Immunologically active polysaccharides of Acanthopanax senticosus. Phytochemistry 24:2619-2622.   DOI
8 Hong, K.N. and J. W. Lee. 2015. Fine-scale spatial genetic and clonal structure of Eleutherococcus senticosus populations in South Korea. Forest Sci. Technol. 11: 160-165.   DOI
9 Ishii, T., Y. Xu and S.R. McCouch. 2001. Nuclear-and chloroplastmicrosatellite variation in A-genome species of rice. Genome 44:658-666.   DOI
10 Kim, J. and K.W. Chung. 2007. Isolation of new microsatellitecontaining sequences in Acanthopanax senticosus. J. Plant Biol. 50:557-561.   DOI
11 Kim, K.Y. 2004. Developing one step program (SSR Manager) for rapid identification of clones with SSRs and primer designing. Department of Plant Science, MS. Thesis, Seoul National Univ., Korea.
12 Liu, K.J. and S.V. Muse. 2005. PowerMarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128-2129.   DOI
13 Konishi, T., H. Iwata, K. Yashiro, Y. Tsumura, R. Ohsawa, Y. Yasui and O. Ohnishi. 2006. Development and characterization of microsatellite markers for common buckwheat. Breed. Sci. 56:277-285.   DOI
14 Lai, C.W.J., Q.Y. Yu, S.B. Hou, R.L. Skelton, M.R. Jones, K.L.T. Lewis, J. Murray, M. Eustice, P.Z. Guan, R. Agbayani, P.H. Moore, R. Ming and G.G. Presting. 2006. Analysis of papaya BAC end sequences reveals first insights into the organization of a fruit tree genome. Mol. Genet. Genomics 276:1-12.   DOI
15 Lee, S., D. Son, J. Ryu, Y.S. Lee, S.H. Jung, J. Kang, S.Y. Lee, H.S. Kim and K.H. Shin. 2004. Anti-oxidant activities of Acanthopanax senticosus stems and their lignan components. Arch. Pharm. Res. 27:106-110.   DOI
16 Ma, K.H., N.S. Kim, G.A. Lee, S.Y. Lee, J.K. Lee, J.Y. Yi, Y.J. Park, T.S. Kim, J.G. Gwag and S.J. Kwon. 2009. Development of SSR markers for studies of diversity in the genus Fagopyrum. Theor. Appl. Genet. 119:1247-1254.   DOI
17 Pritchard, J.K., M. Stephens and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155:945-959.
18 Nishibe, S., H. Kinoshita, H. Takeda and G. Okano. 1990. Phenolic compounds from stem bark of Acanthopanax senticosus and their pharmacological effect in chronic swimming stressed rats. Chem. Pharm. Bull. 38:1763.   DOI
19 Ogutu, C., T. Fang, L. Yan, L. Wang, L.F. Huang, X.Y. Wang, B.Q. Ma, X.B. Deng, A. Owiti, A. Nyende and Y.P. Han. 2016. Characterization and utilization of microsatellites in the Coffea canephora genome to assess genetic association between wild species in Kenya and cultivated coffee. Tree Genet. Genomes. 12.
20 Peakall, R. and P.E. Smouse. 2012. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics 28:2537-2539.   DOI
21 Schuelke, M. 2000. An economic method for the fluorescent labeling of PCR fragments. Nature Biotechnol. 18:233-234.   DOI
22 Shultz, J.L., S. Kazi, R. Bashir, J.A. Afzal and D.A. Lightfoot. 2007. The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theor. Appl. Genet. 114:1081-1090.   DOI
23 Stajner, N., J. Jakse, P. Kozjak and B. Javornik. 2005. The isolation and characterisation of microsatellites in hop (Humulus lupulus L.). Plant Sci. 168:213-221.   DOI
24 Tamanna, A. and A.U. Khan. 2005. Mapping and analysis of Simple Sequence Repeats in the Arabidopsis thaliana Genome. Bioinformation 1:64-68.   DOI
25 Zhang, C.Z., B. Vornam, K. Volmer, K. Prinz, F. Kleemann, L. Kohler, A. Polle and R. Finkeldey. 2015. Genetic diversity in aspen and its relation to arthropod abundance. Front. Plant Sci. 5:806.
26 Tamura, K., J. Dudley, M. Nei and S. Kumar. 2007. MEGA4: Molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24:1596-1599.   DOI
27 Wang, S.H., L. Bao, T.M. Wang, H.F. Wang and J.P. Ge. 2016. Contrasting genetic patterns between two coexisting Eleutherococcus species in northern China. Ecol. Evol. 6:3311-3324.   DOI
28 Zalapa, J.E., T.C. Bougie, T.A. Bougie, B.J. Schlautman, E. Wiesman, A. Guzman, S. Steffan and T. Smith. 2015. Clonal diversity and genetic differentiation revealed by SSR markers in wild Vaccinium macrocarpon and Vaccinium oxycoccos. Ann. Appl. Biol. 166:196-207.   DOI
29 Zhang, Q., B.Q. Ma, H. Li, Y.S. Chang, Y.Y. Han, J. Li, G.C. Wei, S. Zhao, M.A. Khan, Y. Zhou, C. Gu, X.Z. Zhang, Z.H. Han, S.S. Korban, S.H. Li and Y.P. Han. 2012. Identification, characterization, and utilization of genome-wide simple sequence repeats to identify a QTL for acidity in apple. BMC Genomics 13:537.   DOI