Browse > Article
http://dx.doi.org/10.7732/kjpr.2015.28.6.675

Protective Effects of Ramie (Boehmeria nivea) against Oxidative Stress in C6 Glial Cells  

Wang, Xiaoning (Department of Food Science and Nutrition, Pusan National University)
Cho, Sunghun (Department of Integrative Plant Science, Chung-Ang University)
Kim, Ho Bang (Life Sciences Research Institute, Biomedic Co. Ltd.)
Jung, Yong-Su (Yeong-Gwang Agricultural Technology Center)
Cho, Eun Ju (Department of Food Science and Nutrition, Pusan National University)
Lee, Sanghyun (Department of Integrative Plant Science, Chung-Ang University)
Publication Information
Korean Journal of Plant Resources / v.28, no.6, 2015 , pp. 675-681 More about this Journal
Abstract
β amyloid protein (Aβ) plays a critical role in the pathogenesis of Alzheimer's disease (AD) and possibly in Aβ-induced mitochondrial dysfunction and oxidative stress. Aβ can directly cause reactive oxygen species (ROS) production. Overproduction of ROS is considered to be involved in the pathogenesis of neurodegeneration of AD. Here, we investigated 9 kinds of ramie (Boehmeria nivea, (L.) Gaud., BN; hereafter denoted as BN) for their protective action against oxidative stress in a cellular system using C6 glial cells. We observed loss of cell viability and high levels of ROS generation after treatment with hydrogen peroxide (H2O2) and Aβ25-35. However, treatments with BN extracts led to an increase in cell viability and decrease in ROS production induced by H2O2 and Aβ25-35. In particular, the extracts of BN-01 (seobang variety from Seocheon) and BN-09 (local variety from Yeonggwang) showed excellent anti-oxidative properties. This indicates that BN extracts could prevent neurodegeneration by reducing oxidative stress in cells.
Keywords
Boehmeria nivea; Alzheimer’ s disease; Reactive oxygen species; C6 glial cell;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Butterfield, D.A., J. Drake, C. Pocernich and A. Castegna. 2001. Evidence of oxidative damage in Alzheimer’s disease brian: central role for amyliod beta-peptide. Trends Mol. Med. 7:548-554.   DOI
2 Butterfield, D.A. and C.M. Lauderback. 2002. Lipid peroxidation and protein oxidation in Alzheimer’s disease brain: potential causes and consequences involving amyloid beta-peptide-associated free radical oxidative stress. Free Radic. Biol. Med. 32:1050-1060.   DOI
3 Behl, C., J.B. Davis, R. Lesley and D. Schubert. 1994. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 77: 817-827.   DOI
4 Araujo, D.M. and C.W. Cotman. 1992. Beta-amyloid stimulates glial cells in vitro to produce growth factors that accumulate in senile plaques in Alzheimer's disease. Brain Res. 569: 141-145.   DOI
5 Angelini, L.G., A. Lazzeri, G. Levita, D. Fontanelli and C. Bozzi. 2000. Ramie (Boehmeria nivea (L.) Gaud.) and Spanish broom (Spartium junceum L.) fibres for composite materials: agronomical aspects, morphology and mechanical properties. Ind. Crops Prod. 11:145-161.   DOI
6 Juvenet, J. 1889. Ramie. J. Franklin Inst. 128:371-376.   DOI
7 Huang, K.L., Y.K. Lai, C.C. Lin and J.M. Chang. 2006. Inhibition of hepatitis B virus production by Boehmeria nivea root extract in HepG2 2.2.15 cells. World J. Gastroenterol. 12:5721-5725.   DOI
8 Han, W. and M.H. Wang. 2010. Phenylalanine ammonia – Lyase gene (NtPAL4) induced by abiotic stresses in tobacco (Nicotiana tabacum). Korean J. Plant Res. 23:535-540.
9 Gupta, K. and D.S. Wagle. 1988. Nutritional and antinutritional factors of green leafy vegetables. J. Agric. Food Chem. 36:472-474.   DOI
10 Gill, S.S. and N. Tuteja. 2010. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol. Biochem. 48:909-930.   DOI
11 Fukumoto, L.R. and G. Mazza. 2000. Assessing antioxidant and prooxidant activities and phenolic compounds. J. Agric. Food Chem. 48:3597-3604.   DOI
12 Di Carlo, M., D. Giacomazza, P. Picone, D. Nuzzo and P.L. San Biaqio. 2012. Are oxidative stress and mitochondrial dysfunction the key players in the neurodegenerative diseases? Free Radic. Res. 46:1327-1338.   DOI
13 Chen, Y. and S.B. Gibson. 2008. Is mitochondrial generation of reactive oxygen species a trigger for autophagy? Autophagy 4:246-248.   DOI
14 Castoria, R., L. Caputo, C.F. De and C.V. De. 2003. Resistance of postharvest biocontrol yeasts to oxidative stress: a possible new mechanism of action. Phytopathology 93:564-572.   DOI
15 Byun, Y.J., S.K. Kim, Y.M. Kim, G.T. Chea, S.W. Jeong and S.B. Lee. 2009. Hydrogen peroxide induces autophagic cell death in C6 glioma cells via BNIP3-mediated suppression of the mTOR pathway. Neurosci. Lett. 461:131-135.   DOI
16 Mosmann, T. 1983. Rapid colormetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55-63.   DOI
17 Miller, E.W., B.C. Dickinson and C.J. Chang. 2010. Aquaporin-3 mediates hydrogen peroxide uptake to regulate downstream intracellular signaling. Proc. Natl. Acad. Sci. USA. 107: 15681-15686.   DOI
18 Markesbery, W.R. 1997. Oxidative stress hypothesis in Alzheimer’s disease. Free Radic. Biol. Med. 23:134-147.   DOI
19 Madeo, F., E. FÖhlich, M. Ligr, M. Grey, S.J. Sigrist, D.H. Wolf and K.U. FrÖhlich. 1999. Oxygen stress: a regulator of apoptosis in yeast. J. Cell Biol. 145:757-767.   DOI
20 Macarisin, D., S. Droby, G. Bauchan and M. Wisniewski. 2010. Superoxide anion and hydrogen peroxide in the yeast antagonist-fruit interaction: a new role for reactive oxygen species in postharvest biocontrol? Postharvest Biol. Technol. 58:194-202.   DOI
21 Liu, F., X. Liang, N. Zhang, Y. Huang and S. Zhang. 2001. Effect of growth regulators on yield and fiber quality in ramie (Boehmeria nivea (L.) Gaud.), China grass. Field Crops Res. 69:41-46.   DOI
22 Lee, E. and E.J. Cho. 2007. Effects of Coptidis Rhizoma on lowering lipid and oxidative stress. Korean J. Plant Res. 20:544-547.
23 Lee, A.Y., X. Wang, D.G. Lee, Y.M. Kim, Y.S. Jung, H.B. Kim, H.Y. Kim, E.J. Cho and S. Lee. 2014. Various biological activities of ramie (Boehmeria nivea). J. Appl. Biol. Chem. 57:279-286.   DOI
24 Kim, S.H., M.J. Sung, J.H. Park, H.J. Yang and J.T. Hwang. 2013. Boehmeria nivea stimulates glucose uptake by activating peroxisome proliferator-activated receptor gamma in C2C12 cells and improves glucose intolerance in mice fed a high-fat diet. Evid. Based Complement. Alternat. Med. 2013:1-9.
25 Sung, M.J., M. Davaatseren, S.H. Kim, M.J. Kim and J.T. Hwang. 2013. Boehmeria nivea attenuates LPS-induced inflammatory markers by inhibiting p38 and JNK phosphorylations in RAW264.7 macrophages. Pharm. Biol. 51:1131-1136.   DOI
26 Shao, L.J. and J.N. Wang. 2010. Studies on the chemical constituents of radix Boehmeriae. J. Chin. Med. Mat. 33: 1091-1093.
27 Santos, M.J., R.A. Quintanilla, A. Toro, R. Grandy, M.C. Dinamarca, J.A. Godoy and N.C. Inestrosa. 2005. Peroxisomal proliferation protects from beta-amyloid neurode-generation. J. Biol. Chem. 280:41057-41068.   DOI
28 Nunomura, A., G. Perry, G. Aliev, K. Hirai, A. Takeda, E.K. Balraj, P.K. Jones, H. Ghanbari, T. Wataya, S. Shimohama, S. Chiba, C.S. Atwood, R.B. Petersen and M.A. Smith. 2001. Oxidative damage is the earliest event in Alzheimer disease. J. Neuropathol. Exp. Neurol. 60:759-767.   DOI
29 Pike, C.J., A.J. Walencewicz-Wasserman, J. Kosmoski, D.H. Cribbs, C.G. Glabe and C.W. Cotman. 1995. Structure-activity analyses of β-amyloid peptidesl; contribution of the β25-35 region to aggregation and neurotoxicity. J. Neurochem. 64:253-265.
30 Park, J.E., H.J. Bae, N.M. Joo, S.J. Lee, H.A. Jung and E.M. Ahn. 2010. The quality characteristics of cookies with added Boehmeria nivea. Korean J. Food Nutr. 23:446-452 (in Korean).
31 Nho, J.W., I.G. Hwang, H.Y. Kim, Y.R. Lee, K.S. Woo, B.Y. Hwang, S.J. Chang, J.S. Lee and H.S. Jeong. 2010. Free radical scavenging, angiotensin I-converting enzyme (ACE) inhibitory, and in vitro anticancer activities of ramie (Boehmeria nivea) leaves extracts. Food Sci. Biotechnol. 19: 383-390.   DOI
32 Myhre, O. 2003. Evaluation of the probes 2',7'-dichlorofluorescin diacetate, luminal, and lucigenin as indicators of reactive species formation. Biochem. Pharmacol. 65:1575-1582.   DOI
33 Yoon, S.J. and M.S. Jang. 2006. Characteristics of quality in Jeolpyun with different amounts of ramie. Korean J. Food Cookery Sci. 22:636-641 (in Korean).
34 Yatin, S.M., S. Varadarajan, C.D. Link and D.A. Butterfield. 1999. In vitro and in vivo oxidative stress associated with Alzheimer's amyloid beta-peptide (1-42). Neurobiol. Aging 20:325-330.   DOI
35 Xu, Q.M., Y.L. Liu, X.R. Li, X. Li and S.L. Yang. 2011. Three new fatty acids from the roots of Boehmeria nivea (L.) Gaudich and their antifungal activities. Nat. Prod. Res. 25:640-647.   DOI
36 Wang, J.Y., L.L. Wen, Y.N. Huang, Y.T. Chen and M.C. Ku. 2006. Dual effects of antioxidants in neurodegeneration: direct neuroprotection against oxidative stress and indirect protection via suppression of glia-mediated inflammation. Curr. Pharm. Des. 12:3521-3533.   DOI
37 Xio, X.Q., R. Wang, Y.F. Han and X.C. Tang. 2000. Protective effects of huperzine A on $\beta$-amyloid25-35 induced oxidative injury in rat pheochromocytoma cells. Neurosci. Lett. 286:155-158.   DOI
38 Wood, I.M. and J.F. Angus. 1974. A review of prospective crops for the Ord irrigation area. II. Fibre Crops. CSIRO Aust. Div. Land Use Res. Tech. Pap. 36:1-27.
39 Woo, H.A., H.Z. Chae, S.C. Hwang, K.S. Yang, S.W. Kang, K. Kim and S.G. Rhee. 2003. Reversing the inactivation of peroxiredoxins caused by cysteine sulfinic acid formation. Science 300:653-656.   DOI
40 Tian, X.Y., M. Xu, B. Deng, K.S. Leung, K.F. Cheng, Z.Z. Zhao, S.P. Zhang, Z.J. Yang, P.X. Deng, D.Y. Xu, X.P. Xu, I. Koo and M. Wong. 2011. The effects of Boehmeria nivea (L.) Gaud. on embryonic development: in vivo and in vitro studies. J. Ethnopharmacol. 134:393-398.   DOI
41 Tatone, C., G.D. Emidio, M. Ventol, R. Ciriminna and P.G. Artini. 2010. Cryopreservation and oxidative stress in reproductive cells. Gynecol. Endocrinol. 26:563-567.   DOI
42 Zhao, X., L. Yuan, H. Yu, Y. Xi, W. Ma, X. Zhou, J. Ding and R. Xiao. 2013. Genistein inhibited amyloid-β induced inflammatory damage in C6 glial cells. Arch. Med. Res. 45:152-157.