Browse > Article
http://dx.doi.org/10.7732/kjpr.2015.28.1.101

Estimating the Parameters of Pollen Flow and Mating System in Pinus densiflora Population in Buan, South Korea, Using Microsatellite Markers  

Kim, Young Mi (Korea Forest Research Institute)
Hong, Kyung Nak (Korea Forest Research Institute)
Park, Yu Jin (Korea Forest Research Institute)
Hong, Yong Pyo (Korea Forest Research Institute)
Park, Jae In (Department of Forest Science, Chungbuk National University)
Publication Information
Korean Journal of Plant Resources / v.28, no.1, 2015 , pp. 101-110 More about this Journal
Abstract
Parameters of mating system and pollen flow of a Pinus densiflora population in Buan, South Korea, were estimated using seven nuclear microsatellite markers. The expected heterozygosity ($H_e$) was 0.614 in mother trees and 0.624 in seeds. Fixation index (F) was 0.018 and 0.087 in each generation. There was no significant genetic difference between the generations (P > 0.05). From MLTR, the outcrossing rate ($t_m$), the biparental inbreeding ($t_m-t_s$), and the correlation of paternity ($r_p$) were 0.967, 0.057, and 0.012, respectively. tm was larger but $t_m-t_s$ and $r_p$ were smaller than those of allozyme markers in Pinus densiflora. These values were similar to those of microsatellite markers in other pine species. The optimal pollen dispersal model from TwoGener was the normal dispersal model with the effective density of 220 trees/ha and its level of genetic differentiation in pollen pool structure (${\Phi}_{ft}$) was 0.021. The average radial distance of pollen flow (${\delta}$) was calculated as 11.42 m, but no correlation between the pairwise-${\Phi}_{ft}$ and the geographical distance among mother trees was at Mantel test (r = -0.141, P > 0.05). Although the effective pollen dispersal in the population seems to be restricted, the amount of genetic variation might be maintained in each generation without a loss of genetic diversity. It might be because the genetic diversity in pollen pool was high but the genetic difference between pollen donors was small under the complete random mating condition in the Pinus densiflora population in Buan.
Keywords
Pinus densiflora; Correlation of paternity; Genetic diversity; Outcrossing rate; Pollen dispersal distance;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Adams, W.T. 1992. Gene dispersal within forest tree populations. New Forests 6:217-240.   DOI
2 Austerlitz, F. and P.E. Smouse. 2001a. Two-Generation analysis of pollen flow across a landscape. II. relation between $\Phi_{ft}$, pollen dispersal and inter female distance. Genet. Soc. Am.157:851-857.
3 Austerlitz, F. and P.E. Smouse. 2001b. Two-Generation analysis of pollen flow across a landscape. III. Impact of adult population structure. Genet. Res. 271-280.
4 Bittencourt, J.V.M. and A.M. Sebbenn. 2007. Pollen movement within a continuous forest of wind-pollinated Araucaria angustifolia, inferred from paternity and TwoGener analysis. Conservation Genetics 9:855-868.
5 Bower, A.D. and S.N. Aitken. 2007. Mating system and inbreeding depression in whitebark pine (Pinus albicaulis Engelm.). Tree Genet. Genomes 3:379-388.   DOI
6 Brown, A.H.D. 1979. Enzyme polymorphism in plant populations.Theor. Pop. Biol. 15:1-42.   DOI
7 Burczyk, J., W.T. Adams and J.Y. Shimizu. 1996. Mating patterns and pollen dispersal in a natural knob-cone pine (Pinus attenuata Lemmon.) stand. Heredity 77:251-260.
8 Carneiro, F.S., A.E.B. Lacerda, M. R. Lemes, R. Gribel, M.Kanashiro, L.H.O. Wadt and A.M. Sebbenn. 2011. Effects of selective logging on the mating system and pollen dispersal of Hymenaea courbaril L. (Leguminosae) in the Eastern Brazilian Amazon as revealed by microsatellite analysis. For. Ecol. Manag. 262:1758-1765.   DOI
9 Carvers, S., B. Degen, H. Caron, M.R. Lemes, R. Margis, F. Salgueiro and A.J. Lewe. 2005. Optimal sampling strategy for estimation of spatial genetic structure in tree populations. Heredity 95:281-289.   DOI
10 Choi, J.W., J.L. Kwak, K.L. Lee and W.K. Choi. 2009. A study for plant community structure and management plan of Pinus densiflora Forest in ByeonsanBando National Park. Kor. J. Env. Ecol. 23(5):447-457 (in Korean).
11 Cockerham, C.C. and B.S. Weir. 1993. Estimation of gene flow from F-statistics. Evolution 47:855-863.   DOI
12 De-Lucas, A.I., J.J. Robledo-Arnuncio, E. Hidalgo and S.C. Gonzalez-Martinez. 2008. Mating system and pollen gene flow in Mediterranean maritime pine. Heredity 100: 390-399.   DOI
13 Dow, B.D. and M.V. Ashley. 1998. High levels of gene flow in bur oak revealed by paternity analysis using microsatellites. Heredity 89:62-70.   DOI
14 Dyer, R.J. 2002. Contemporary pollen movement in shortleaf pine, Pinus echinata Mill. Ph.D. Thesis, Missouri Univ., USA. p. 140.
15 Guan, L., Suharyanto and S. Shiraishi. 2011. Isolation and characterization of tetranucleotide microsatellite loci in Pinus massoniana (Pinaceae). Am. J. Bot. 216-217.
16 Ennos, R.A. and M.T. Clegg. 1982. Effect of population substructuring on estimates of outcrossing rate on plant populations. Heredity 48:283-292.   DOI
17 Eriksson, G., G. Namkoong and J.H. Roberds. 1993. Dynamic gene conservation for uncertain futures. For. Ecol. Manag. 62:15-37.   DOI
18 Finkeldey, R. and M. Ziehe. 2004. Genetic implications of silvicultural regimes. For. Ecol. Manag. 197:231-244.   DOI
19 Han, S.U., W.Y. Choi, K.H. Cahng and B.W. Lee. 2001. Estimation of effective population numbers and sexual asymmetry based on flowering assessment in clonal seed of orchard Pinus densiflora. Korean. J. Breed. 33(1):29-34 (in Korean).
20 Han, S.D., W.P. Hong, B.H. Yang, S.W. Lee and C.S. Kim. 2004. Estimation of mating system parameters on the natural population in Pinus densiflora of Mt. Juwang. Proceedings of J. Kor. For. Soc. pp. 315-316 (in Korean).
21 Hong, Y.P., J.Y. Ahn, Y.M. Kim, K.N. Hong and B.H. Yang. 2013. Mating system in natural population of Pinus koraiensis at Mt. Seorak based on allozyme and cpSSR markers. J. Kor. For. Soc. 102(2):264-271 (in Korean).
22 Jump, A.S., R. Marchant and J. Penuelas. 2009. Environmental change and the option value of genetic diversity. Trends in Plant Sci. 14:51-58.
23 KFRI (Korea Forest Research Institute). 2006. Forest seedling: In Oh, J.S. et al. (eds.), Textbook for Forest Management II. KFRI., Seoul, Korea. p. 19 (in Korean).
24 Lian, C., M. Miwa and T. Hogetsu. 2000. Isolation and characterization of microsatellite loci from the Japanese red pine, Pinus densiflora. Mol. Ecol. 9:1186-1188.   DOI
25 Kim, Y.M., Y.P. Hong, J.Y. Ahn and J.I. Park. 2012. Mating system of Japanese red pines in seed orchard using DNA markers. J. Korean Plant Res. 25:63-75.   DOI   ScienceOn
26 Lee, S.W., S.S. Jang, K.H. Jang and C.S. Kim. 2003. Estimation of mating system parameters in natural population of Pinus densiflora of Anmyun island, Korea using allozyme markers. J. Kor. For. Soc. 92(2):121-128.
27 Lewandowski, A. and J. Burczyk. 2000. Mating system and genetic diversity in natural populations of european larch (Larix decidua) and stone pine (Pinus cembra) located at higher elevations. Silvae Genet. 49(3):158-161.
28 Lian, C., M. Miwa and T. Hogetsu. 2001. Outcrossing and paternity analysis of Pinus densiflora (Japanese red pine) by microsatellite polymorphism. Heredity 87:88-98.   DOI
29 Liewlaksaneeyanawin, C. 2006. Genetic evaluation of natural and domesticated lodgepole pine populations using molecular markers. Ph.D. Thesis, British Columbia Univ., Canada. pp. 144-146.
30 Liewlaksaneeyanawin, C., C.E. Ritland, Y.A. El-Kassaby and K. Ritland. 2004. Single-copy, species-transferable micro-satellite markers developed from lobolly pine ESTs. Theor. Appl. Genet. 109:361-369.
31 Lynch, M., J. Conery and R. Burger. 1995. Mutation accumulation and the extinction of small populations. American Naturalist 146:489-518.   DOI   ScienceOn
32 Mitton, J.B. 1992. The dynamic mating systems of conifers. New Forests 6:197-216.   DOI
33 Raijmann, L.N., C. Van-Leeuwen, R. Kersten, G.B. Oostermeijer and H.C.M. Den-Nijs. 1994. Genetic variation and outcrossing rate in relation to population size in Gentiana pneumontane L. Conservation Biology 8:1014-1026.   DOI
34 Oh, K.K. and S.Y. Kim. 2009. A study in distribution of vegetation and assessment of green naturality in Byeonsanbando national park. Kor. J. Env. Eco. 23(2):161-168 (in Korean).
35 Ozawa, H., A. Watanabe, K. Uchiyama, W. Saito and Y. Ide. 2012. Genetic diversity of Pinus densiflora pollen flowing over fragmented populations during a mating season. J. For. Res. 17:488-498.   DOI
36 Peakall, R. and P.E. Smouse. 2006. GENALEX 6.41: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 6:288-295.   DOI
37 Rieseberg, L.H. and J.M. Burke. 2001. The biological reality of species: gene flow, selection, and collective evolution. Taxon 50:47-67.   DOI
38 Ritland, K. 2002. Extensions of models for the estimation of mating systems using n independent loci. Heredity 88:211-228.
39 Ritland, K. 2004. Multilocus mating system program MLTR. Version 3.1. University of British Columbia, Canada. (http://www.kritland@interchange.ubc.ca)
40 Robledo-Arnuncio, J.J., P.E. Smouse, L. Gill and R. Alia. 2004. Pollen movement under alternative silvicultural practices in native populations of Scots pine (Pinus sylvestris L.) in central Spain. For. Ecol. Manag. 197:245-255.   DOI
41 Robledo-Arnuncio, J.J., F. Austerlitz and P.E. Smouse. 2006. A new method of estimating the pollen dispersal curve independently of effective density. Genet. Soc. Am. 173:1033-1045.
42 Smouse, P.E. and V.L. Sork. 2004. Measuring pollen flow in forest trees: an exposition of alternative approaches. For. Ecol. Manag. 197:21-38.   DOI
43 Salmela, M.J. 2011. Adaptive genetic variation in Scots pine (Pinus sylvestris L.) in Scotland. Ph.D. Thesis, University of Edinburgh, UK. p. 36.
44 Shaw, D.W., A.L. Kahler and R.W. Allard. 1981. A multilocus estimator of mating system parameters in plant populations. Proc. Natl. Acad. Sci., USA. 78(2):1298-1302.   DOI
45 Smouse, P.E., R.J. Dyer, R.D. Westfall and V.L. Sork. 2001. Two-generation analysis of pollen flow across a landscape. I. male gamete heterogeneity among females. Evolution 55(2): 260-271.   DOI
46 Sork, V.L., F.W. Davis, P.E. Smouse, V.J. Apsit, R.J. Dyer, J.F. Fernandez-M and B. Kuhn. 2002. Pollen movement in declining populations of California valley oak, Quercus lobata: where have all the fathers gone? Mol. Ecol. 11:1657-1668.   DOI
47 Waples, R.S. and C. Do. 2008. LDNe: A program for estimating effective population size from data on linkage disequilibrium. Mol. Ecol. Resour. 8:753-756.   DOI
48 Watanabe, A., M.G. Iwaizumi, M. Ubukata, T. Kondo, C. Lian and T. Hogetsu. 2006. Isolation of microsatellite markers from Pinus densiflora Sieb. et Zucc. using a dual PCR technique. Mol. Ecol. Notes 6:80-82.   DOI
49 Young, A.G., T. Boyle and A.H.D. Brown. 1996. The population genetic consequences of habitat fragmentation for plants. Trends in Ecol. Evol. 11:413-418.   DOI