Browse > Article
http://dx.doi.org/10.7732/kjpr.2012.25.2.169

Inhibitory Effects of Campsis grandiflora on HIV-1 reverse Transcriptase, HIV-1 Protease and α-glucosidase  

Yu, Young-Beob (Department of Herbal Pharmaceutical Development, Nambu University)
Publication Information
Korean Journal of Plant Resources / v.25, no.2, 2012 , pp. 169-175 More about this Journal
Abstract
For the elucidation of action mechanism on anti-HIV of natural resources, the extracts of $Campsis$ $grandiflora$ were tested for their inhibitory effects on HIV-1 replication and its essential enzymes as the reverse transcriptase (RT), protease and ${\alpha}$-glucosidase. In the assay of HIV-1-infected human T-cell line, water extracts of stem inhibited the HIV-1-induced cytopathic effects with IC (inhibitory concentration) of 100 ${\mu}g$/ml. Moreover water extracts (100 ${\mu}g$/ml) of stem showed strong activity of 37.9% on anti-HIV-1 RT using Enzyme Linked Oligonucleotide Sorbent Assay (ELOSA) method. In the HIV-1 protease inhibition assay, methanol extracts of stem and leaf extract showed 33.6% and 31.5% inhibition of the enzyme activity to cleave an oligopeptide resembling one of the cleavage sites in the viral polyprotein which can only be processed by HIV-1 protease, but did not exhibited glucosidase inhibitory activities. From these results, it is suggested that the inhibition of the viral replication $in$ $vitro$ is due to the inhibition of reverse transcriptase by water extracts of stem of $Campsis$ $grandiflora$.
Keywords
Campsis grandiflora; Anti HIV-1; Reverse transcriptase; Protease; ${\alpha}$-glucosidase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Kaminchik. J., R. Margalit., S. Yaish., H. Drummer., B. Amit., N. Saver., M. Gorecki and A. Panet. 1994. Cellular distribution of HIV type I nef protein: Identification of domains in nef required for association with membrane and detergent-insoluble cellular matrix. Aids Res. and Human Retrovir. 10:1003-1010.   DOI   ScienceOn
2 Katz. R.A. and A.M. Skalka. 1994. The retroviral enzymes. Annu. Rev. Biochem. 63: 133-173.   DOI   ScienceOn
3 Kim. D.H., K.M. Han., I.S. Chung., S.H. Kim., B.M. Kwon., T.S. Jeong., M.H. Park., E.M. Ahn and N.I. Beaek. 2005. Triterpenoids from the flower of Campsis grandiflora K. Schum. as human acly-COA: chlesterrol. Arch. Pharm. Res. 28(5):550-556.   DOI
4 Kim. D.H., M.C. Song., K.M. Han., M.H. Bang., B.M. Kwon., S.H. Kim., D.K. Kim., I.S. Chung., M.H. Park and N.I. Baek. 2004. Development of biologically active compounds from edible plant sources-X isolation of lipids from the flower of Campsis grandiflora K. Schum. and their inhibitory effect on FPTase. J. Korean Soc. Appl. Biol. Chem. 47(3):357-360.
5 Kusumoto. I.T., T. Nakabayashi., H. Kida., H. Miyashiro., M. Hattori., T. Namba and K. Shimotohno. 1995. Screening of various plant extracts used in ayurvedic medicine for inhibitory effects on human immunodeficiency virus type 1 (HIV-1) protease. Phytotherpy Res. 9:180-184.   DOI   ScienceOn
6 Mayaux. J.F., A. Bousseau., R. Pauwels., T. Huet., Y. Henin., N. Dereu., M. Evers., F. Soler., C. Poujade., E. De Clercq and J.B. Le Pecq. 1994. Triterpene derivatives that block entry of human immunodeficiency virus type 1 into cells. Proc. Natl. Acad. Sci. 91:3564-3568.   DOI   ScienceOn
7 Mohan. P. 1992. Anti-AIDS drug development: challenges and strategies. Pharmaceutical Res. 9 (6):703-714.   DOI
8 Otake. T., H. Mori., M. Morimoto., N. Ueba and I..T. Kusumoto. 1994. Anti-human immunodeficiency virus activity of some tropical medicinal plants. J. Traditional Med. 11: 188-193.
9 Balzarini. J., J. Neyts., D. Schols., M. Hosoya., E. Van Damme., W. Peumans and E. De clercq. 1992. The mannose-specific plants lectins from Cymvidium hybrid and Epipactis helleborine and the (N-acetylglucosamine) n-specific plant lectin from Urtica dioica are potent and selective inhibitors of human immunodeficiency virus and cytomegalovirus replication in vitro. Antiviral Res. 18:191-207.   DOI
10 Batinic. D. and R.A. Robey. 1992. The V3 region of the envelope glycoprotein of human immunodeficiency virus type 1 binds sulfated polysaccharides and CD4-derived synthetic peptides. J. Bio. Chem. 267:6664-6671.
11 Cui. X.Y., J.H. Kim., X. Zhao., B.Q. Chen., B.C. Lee., H.B. Pyo., Y.P. Yun and Y.H. Zhang. 2006. Antioxidative and acute anti-inflammatory effects of Campsis grandiflora flower. J. Ethnopharmacol. 103(2):223-228.   DOI
12 Jin. JL., S. Lee., Y.Y. Lee., J.E. Heo., J.M. Kim and H.S. Yun-Choi. 2005. Two new non-glycosidic iridoids from the leaves of Campsis grandiflora. Planta Med. 71(6): 578-580.   DOI
13 Jin. J.L., Y.Y. Lee., J.E. Heo., S. Lee., J.M. Kim and H.S. Yun-Choi. 2004. Anti-platelet pentacyclic triterpenoids from leaves of Campsis grandiflora. Arch. Pharm. Res. 27(4): 376-380.   DOI
14 Jung. S.H., Y.J. Ha., E.K. Shim., S.Y. Choi., J.L. Jin., H.S. Yun-Choi and J.R. Lee. 2007. Insulin-mimetic and insulin -sensitizing activites of a pentacyclic triterpenoid insulin receptor activator. Biochem. J. 403(2):243-250.   DOI
15 Kakiuchi. N., M. Hattori and T. Namba. 1985. Inhibitory effect of tannins on reverse transcriptase from RNA tumor virus. J. Nat. Prod. 48(4):614-621.   DOI
16 Nakashima. H., T. Murakami., N. Yamamoto., H. Sakagami., S. Tanuma., T. Hatano., T. Yoshida and T. Okuda. 1992. Inhibition of human immunodeficiency viral replication by tannins and related compounds. Antiviral Res. 18:91-103.   DOI   ScienceOn
17 Prusoff. W., T.S. Lin., A. Pivazyan., A.S. Sun and E. Birks. 1993. Empirical and rational approaches for development of inhibitors of the human immunodeficiency virus--HIV-1. Pharmacol. Ther. 60(2):315-329.   DOI
18 Yu. Y.B., H. Miyashiro., N. Nakamura., M. Hattori and J.C. Park. 2007. Effects of triterpenoids and flavonoids isolated from Alnus firma on HIV-1 viral enzymes. Arch. Pharm. Res. 30(7):820-826.   DOI   ScienceOn
19 Zhang. Q., J. Shen., Y. Liu., Y. Bi., Z. Wang and W. Xiao. 2011. Simultaneous determination of acteoside, oleanolic acid and ursolic acid in flower of Campsis grandiflora by HPLC. Zhongguo Zhong Yao Za Zhi 36(8):1043-1045.
20 Prasad. V.R. and S.P. Goff. 1989. Linker insertion mutagenesis of human immunodeficiency virus reverse transcriptase expressed in bacteria: definition of the minimal polymerase domain. Proc. Natl. Acad. Sci. 86:3104-3108.   DOI
21 Rossmann. M.G. 1988. Antiviral agents targeted to interact with viral capsid proteins and a possible application to human immunodeficiency virus. Proc. Natl. Acad. Sci. 85:4625-4627.   DOI
22 Taraporewala. I.B., J.W. Cessac., T.C. Chanh., A.V. Delgado and R.F. Schinazi. 1992. HIV-1 neutralization and tumor cell proliferation inhibition in vitro by simplified analogues of pyrido[4,3,2-mn]thiazolo[5,4-b]acridine marine alkaloids. J. Med. Chem. 35(15):2744-2752.   DOI
23 Taylor. D.L., M.S. Kang., T.M. Brennan., C.G. Bridges., P.S. Sunkara and A.S. Tyms. 1994. Inhibition of α -glucosidase I of the glycoprotein-processing enzymes by 6-O-butanoyl castanospermine (MDL 28,574) and its consequences in human immunodeficiency virus-infected T cells. Antimicrobacterial Agents and Chemother. 38(8): 1780-1787.   DOI   ScienceOn
24 Weber. P.C., D.H. Ohlendorf., J.J. Wendoloski and F.R. Salemme. 1989. Structural origins of high-affinity biotin binding to streptavidin. Science 243: 85-88.   DOI
25 Yang. S.S., G.M. Cragg., D.J. Newman and J.P. Bader. 2001. Natural product-based anti-HIV drug discovery and development facilitated by the NCI developmental therapeutics program. J. Nat. Prod. 64(2):265-277.   DOI   ScienceOn
26 Peliska. J.A. and S. J. Benkovic. 1992. Mechanism of DNA strand transfer reactions catalyzed by HIV-1 reverse transcriptase. Science 258:1112-1118.   DOI