Browse > Article
http://dx.doi.org/10.4490/algae.2022.37.6.8

Development of an automatic system for cultivating the bioluminescent heterotrophic dinoflagellate Noctiluca scintillans on a 100-liter scale  

You, Ji Hyun (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Park, Sang Ah (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Ok, Jin Hee (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Kang, Hee Chang (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Eom, Se Hee (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Lim, An Suk (Division of Life Science & Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University)
Publication Information
ALGAE / v.37, no.2, 2022 , pp. 149-161 More about this Journal
Abstract
Noctiluca scintillans is a heterotrophic dinoflagellate that causes red-colored oceans during the day (red tides) and glowing oceans at night (bioluminescence). This species feeds on diverse prey, including phytoplankton, heterotrophic protists, and eggs of metazoans. Thus, many scientists have conducted studies on the ecophysiology of this species. It is easy to cultivate N. scintillans at a scale of <1 L, but it is difficult to cultivate them at a scale of >100 L because N. scintillans cells usually stay near the surface, while prey cells stay below the surface in large water tanks. To obtain mass-cultured N. scintillans cells, we developed an automatic system for cultivating N. scintillans on a scale of 100 L. The system consisted of four tanks containing fresh nutrients, the chlorophyte Dunaliella salina as prey, N. scintillans for growth, and N. scintillans for storage, respectively. The light intensities supporting the high growth rates of D. salina and N. scintillans were 300 and 20 µmol photons m-2 s-1, respectively. Twenty liters of D. salina culture from the prey culture tank were transferred to the predator culture tank, and subsequently 20 L of nutrients from the nutrient tank were transferred to the prey culture tank every 2 d. When the volume of N. scintillans in the predator culture tank reached 90 L 6 d later, 70 L of the culture were transferred to the predator storage tank. To prevent N. scintillans cells from being separated from D. salina cells in the predator culture tank, the culture was mixed using an air pump, a sparger, and a stirrer. The highest abundance of N. scintillans in the predator culture tank was 45 cells mL-1, which was more than twice the highest abundance when this dinoflagellate was cultivated manually. This automatic system supplies 100 L of N. scintillans pure culture with a high density every 10 d for diverse experiments on N. scintillans.
Keywords
bioluminescence; feeding; food web; mass culture; protist; red tide;
Citations & Related Records
Times Cited By KSCI : 8  (Citation Analysis)
연도 인용수 순위
1 Rohr, J., Latz, M. I., Fallon, S., Nauen, J. C. & Hendricks, E. 1998. Experimental approaches towards interpreting dolphin-stimulated bioluminescence. J. Exp. Biol. 201: 1447-1460.   DOI
2 Spilling, K., Olli, K., Lehtoranta, J., Kremp, A., Tedesco, L., Tamelander, T., Klais, R., Peltonen, H. & Tamminen, T. 2018. Shifting diatom: dinoflagellate dominance during spring bloom in the Baltic Sea and its potential effects on biogeochemical cycling. Front. Mar. Sci. 5:327.   DOI
3 Stauffer, B. A., Gellene, A. G., Rico, D., Sur, C. & Caron, D. A. 2017. Grazing of the heterotrophic dinoflagellate Noctiluca scintillans on dinoflagellate and raphidophyte prey. Aquat. Microb. Ecol. 80:193-207.   DOI
4 Kimor, B. 1979. Predation by Noctiluca miliaris Souriray on Acartia tonsa Dana eggs in the inshore waters of southern California. Limnol. Oceanogr. 24:568-572.   DOI
5 Sellers, C. G., Gast, R. J. & Sanders, R. W. 2014. Selective feeding and foreign plastid retention in an Antarctic dinoflagellate. J. Phycol. 50:1081-1088.   DOI
6 Bityukov, E. P. 1971. Bioluminescence in the wake current in the Atlantic Ocean and Mediterranean Sea. Okean 11:127-133.
7 Coats, D. W. 1999. Parasitic life styles of marine dinoflagellates. J. Eukaryot. Microbiol. 46:402-409.   DOI
8 Kiorboe, T. & Titelman, J. 1998. Feeding, prey selection and prey encounter mechanisms in the heterotrophic dinoflagellate Noctiluca scintillans. J. Plankton Res. 20:1615-1636.   DOI
9 Lee, S. Y., Jeong, H. J., Kang, H. C., Ok, J. H., You, J. H., Park, S. A. & Eom, S. H. 2021. Comparison of the spatial-temporal distributions of the heterotrophic dinoflagellates Gyrodinium dominans, G. jinhaense, and G. moestrupii in Korean coastal waters. Algae 36:37-50.   DOI
10 Lim, A. S., Jeong, H. J., Jang, T. Y., Yoo, Y. D., Kang, N. S., Yoon, E. Y. & Kim, G. H. 2014. Feeding by the newly described heterotrophic dinoflagellate Stoeckeria changwonensis: a comparison with other species in the family Pfiesteriaceae. Harmful Algae 36:11-21.   DOI
11 Sugawara, T., Yamashita, K., Sakai, S., Asai, A., Nagao, A., Shiraishi, T., Imai, I. & Hirata, T. 2007. Induction of apoptosis in DLD-1 human colon cancer cells by peridinin isolated from the dinoflagellate, Heterocapsa triquetra. Biosci. Biotechnol. Biochem. 71:1069-1072.   DOI
12 Sweeney, B. M. 1971. Laboratory studies of a green Noctiluca from New Guinea. J. Phycol. 7:53-58.
13 Tada, K., Pithakpol, S. & Montani, S. 2004. Seasonal variation in the abundance of Noctiluca scintillans in the Seto Inland Sea, Japan. Plankton Biol. Ecol. 51:7-14.
14 Tarasov, N. I. 1956. Marine luminescence. Naval Oceanographic Office, Report No. NOOT-21. National Space Technology Laboratories Station, Bay St. Louis, MO, 183 pp.
15 Uhlig, G. & Sahling, G. 1990. Long-term studies on Noctiluca scintillans in the German Bight population dynamics and red tide phenomena 1968-1988. Neth. J. Sea Res. 25:101-112.   DOI
16 Tett, P. B. 1971. The relation between dinoflagellates and the bioluminescence of sea water. J. Mar. Biol. Assoc. U. K. 51:183-206.   DOI
17 Thomas, W. H. & Gibson, C. H. 1990. Quantified small-scale turbulence inhibits a red tide dinoflagellate, Gonyaulax polyedra Stein. Deep Sea Res. Part A Oceanogr. Res. Pap. 37:1583-1593.   DOI
18 Turkoglu, M. 2013. Red tides of the dinoflagellate Noctiluca scintillans associated with eutrophication in the Sea of Marmara (the Dardanelles, Turkey). Oceanologia 55:709-732.   DOI
19 Valiadi, M., de Rond, T., Amorim, A., Gittins, J. R., Gubili, C., Moore, B. S., Iglesias-Rodriguez, D. & Latz, M. I. 2019. Molecular and biochemical basis for the loss of bioluminescence in the dinoflagellate Noctiluca scintillans along the west coast of the USA. Limnol. Oceanogr. 64:2709-2724.   DOI
20 Valiadi, M. & Iglesias-Rodriguez, D. 2013. Understanding bioluminescence in dinoflagellates: how far have we come? Microorganisms 1:3-25.   DOI
21 Valiadi, M. & Iglesias-Rodriguez, M. D. 2014. Diversity of the luciferin binding protein gene in bioluminescent dinoflagellates: insights from a new gene in Noctiluca scintillans and sequences from Gonyaulacoid genera. J. Eukaryot. Microbiol. 61:134-145.   DOI
22 Loder, M. G. J., Kraberg, A. C., Aberle, N., Peters, S. & Wiltshire, K. H. 2012. Dinoflagellates and ciliates at Helgoland roads, North Sea. Helgol. Mar. Res. 66:11-23.   DOI
23 Williams, T. M. & Kooyman, G. L. 1985. Swimming performance and hydrodynamic characteristics of harbor seals Phoca vitulina. Physiol. Zool. 58:576-589.   DOI
24 Wynn, J. P. & Ratledge, C. 2005. Oils from microorganisms. In Shahidi, F. (Ed.) Bailey's Industrial Oil and Fat Products. John Wiley & Sons, Hoboken, NJ, pp. 121-153.
25 Jeong, H. J., Yoo, Y. D., Lee, K. H., Kim, T. H., Seong, K. A., Kang, N. S., Lee, S. Y., Kim, J. S., Kim, S. & Yih, W. H. 2013. Red tides in Masan Bay, Korea in 2004-2005: I. Daily variations in the abundance of red-tide organisms and environmental factors. Harmful Algae 30(Suppl. 1):S75-S88.   DOI
26 Johnson, K. B. & Shanks, A. L. 2003. Low rates of predation on planktonic marine invertebrate larvae. Mar. Ecol. Prog. Ser. 248:125-139.   DOI
27 Lee, K. H., Jeong, H. J., Yoon, E. Y., Jang, S. H., Kim, H. S. & Yih, W. 2014. Feeding by common heterotrophic dinoflagellates and a ciliate on the red-tide ciliate Mesodinium rubrum. Algae 29:153-163.   DOI
28 Lim, A. S., Jeong, H. J., Kim, S. J. & Ok, J. H. 2018. Amino acids profiles of six dinoflagellate species belonging to diverse families: possible use as animal feeds in aquaculture. Algae 33:279-290.   DOI
29 Lim, A. S., Jeong, H. J., You, J. H. & Park, S. A. 2020. Semicontinuous cultivation of the mixotrophic dinoflagellate Gymnodinium smaydae, a new promising microalga for omega-3 production. Algae 35:277-292.   DOI
30 Miyaguchi, H., Fujiki, T., Kikuchi, T., Kuwahara, V. S. & Toda, T. 2006. Relationship between the bloom of Noctiluca scintillans and environmental factors in the coastal waters of Sagami Bay, Japan. J. Plankton Res. 28:313-324.   DOI
31 Morin, J. G. 1983. Coastal bioluminescence: patterns and functions. Bull. Mar. Sci. 33:787-817.
32 Nakamura, Y. 1998. Growth and grazing of a large heterotrophic dinoflagellate, Noctiluca scintillans, in laboratory cultures. J. Plankton Res. 20:1711-1720.   DOI
33 Glibert, P. M., Burkholder, J. M. & Kana, T. M. 2012. Recent insights about relationships between nutrient availability, forms, and stoichiometry, and the distribution, ecophysiology, and food web effects of pelagic and benthic Prorocentrum species. Harmful Algae 14:231-259.   DOI
34 Davy, S. K., Allemand, D. & Weis, V. M. 2012. Cell biology of cnidarian-dinoflagellate symbiosis. Microbiol. Mol. Biol. Rev. 76:229-261.   DOI
35 Berdalet, E. 1992. Effects of turbulence on the marine dinoflagellate Gymnodinium nelsonii. J. Phycol. 28:267-272.   DOI
36 Buskey, E. J. 1995. Growth and bioluminescence of Noctiluca scintillans on varying algal diets. J. Plankton Res. 17:29-40.   DOI
37 Buskey, E. J., Strom, S. & Coulter, C. 1992. Biolumiscence of heterotrophic dinoflagellates from Texas coastal waters. J. Exp. Mar. Biol. Ecol. 159:37-49.   DOI
38 Jeong, H. J. & Lim, A. S. 2020. Method and system for continuous mass culture for mixotrophic dinoflagellates. Patent no. KR102064718B1. Korean Intellectual Property Office, Daejeon.
39 Harrison, P. J., Furuya, K., Glibert, P. M., Xu, J., Liu, H. B., Yin, K., Lee, J. H. W., Anderson, D. M., Gowen, R., Al-Azri, A. R. & Ho, A. Y. T. 2011. Geographical distribution of red and green Noctiluca scintillans. Chin. J. Oceanol. Limnol. 29:807-831.   DOI
40 Jang, S. H., Jeong, H. J. & Kwon, J. E. 2017. High contents of eicosapentaenoic acid and docosahexaenoic acid in the mixotrophic dinoflagellate Paragymnodinium shiwhaense and identification of putative omega-3 biosynthetic genes. Algal Res. 25:525-537.   DOI
41 Jacobson, D. M. & Anderson, D. M. 1996. Widespread phagocytosis of ciliates and other protists by marine mixotrophic and heterotrophic thecate dinoflagellates. J. Phycol. 32:279-285.   DOI
42 Eom, S. H., Jeong, H. J., Ok, J. H., Park, S. A., Kang, H. C., You, J. H., Lee, S. Y., Yoo, Y. D., Lim, A. S. & Lee, M. J. 2021. Interactions between common heterotrophic protists and the dinoflagellate Tripos furca: implication on the long duration of its red tides in the South Sea of Korea in 2020. Algae 36:25-36.   DOI
43 Guillard, R. R. & Ryther, J. H. 1962. Studies of marine planktonic diatoms: I. Cyclotella nana Hustedt, and Detonula confervacea (Cleve) Gran. Can. J. Microbiol. 8:229-239.   DOI
44 Gupta, P. L., Lee, S. -M. & Choi, H. -J. 2015. A mini review: photobioreactors for large scale algal cultivation. World J. Microbiol. Biotechnol. 31:1409-1417.   DOI
45 You, J. H., Jeong, H. J., Kang, H. C., Ok, J. H., Park, S. A. & Lim, A. S. 2020. Feeding by common heterotrophic protist predators on seven Prorocentrum species. Algae 35:61-78.   DOI
46 Hastings, J. W. 1975. Dinoflagellate bioluminescence: molecular mechanisms and circadian control. In Lo Cicero, V. R. (Ed.) Proc. First Int. Conf. Toxic Dinoflagellate Blooms, The Massachusetts Science and Technology Foundation, Wakefield, pp. 235-248.
47 Jeong, H. J. 1995. The interactions between microzooplanktonic grazers and dinoflagellates causing red tides in the open coastal waters off southern California. Ph.D. dissertation, University of California, San Diego, CA, USA, 139 pp.
48 Jeong, H. J., Kang, H. C., Lim, A. S., Jang, S. H., Lee, K., Lee, S. Y., Ok, J. H., You, J. H., Kim, J. H., Lee, K. H., Park, S. A., Eom, S. H., Yoo, Y. D. & Kim, K. Y. 2021. Feeding diverse prey as an excellent strategy of mixotrophic dinoflagellates for global dominance. Sci. Adv. 7:eabe4214.   DOI
49 Jeong, H. J., Yoo, Y. D., Kang, N. S., Lim, A. S., Seong, K. A., Lee, S. Y., Lee, M. J., Lee, K. H., Kim, H. S., Shin, W., Nam, S. W., Yih, W. & Lee, K. 2012. Heterotrophic feeding as a newly identified survival strategy of the dinoflagellate Symbiodinium. Proc. Natl. Acad. Sci. U. S. A. 109:12604-12609.   DOI
50 Jeong, H. J., Yoo, Y. D., Kim, J. S., Seong, K. A., Kang, N. S. & Kim, T. H. 2010. Growth, feeding and ecological roles of the mixotrophic and heterotrophic dinoflagellates in marine planktonic food webs. Ocean Sci. J. 45:65-91.   DOI
51 Park, S. A., Jeong, H. J., Ok, J. H., Kang, H. C., You, J. H., Eom, S. H., Yoo, Y. D. & Lee, M. J. 2021b. Bioluminescence capability and intensity in the dinoflagellate Alexandrium species. Algae 36:299-314.   DOI
52 Zhang, S., Liu, H., Guo, C. & Harrison, P. J. 2016. Differential feeding and growth of Noctiluca scintillans on monospecific and mixed diets. Mar. Ecol. Prog. Ser. 549:27-40.   DOI
53 Ok, J. H., Jeong, H. J., Kang, H. C., Park, S. A., Eom, S. H., You, J. H. & Lee, S. Y. 2021. Ecophysiology of the kleptoplastidic dinoflagellate Shimiella gracilenta: I. spatiotemporal distribution in Korean coastal waters and growth and ingestion rates. Algae 36:263-283.   DOI
54 Onodera, K. -I., Konishi, Y., Taguchi, T., Kiyoto, S. & Tominaga, A. 2014. Peridinin from the marine symbiotic dinoflagellate, Symbiodinium sp., regulates eosinophilia in mice. Mar. Drugs 12:1773-1787.   DOI
55 Park, M. G., Kim, S., Shin, E. -Y., Yih, W. & Coats, D. W. 2013. Parasitism of harmful dinoflagellates in Korean coastal waters. Harmful Algae 30(Suppl 1):S62-S74.   DOI
56 Park, S. A., Jeong, H. J., Ok, J. H., Kang, H. C., You, J. H., Eom, S. H. & Park, E. C. 2021a. Interactions between the kleptoplastidic dinoflagellate Shimiella gracilenta and several common heterotrophic protists. Front. Mar. Sci. 8:738547.   DOI
57 Jerney, J. & Spilling, K. 2018. Large scale cultivation of microalgae: open and closed systems. In Spilling, K. (Ed.) Biofuels from Algae: Methods and Protocols. Humana Press, New York, NY, pp. 1-8.
58 Jeong, H. J., You, J. H., Lee, K. H., Kim, S. J. & Lee, S. Y. 2018. Feeding by common heterotrophic protists on the mixotrophic alga Gymnodinium smaydae (Dinophyceae), one of the fastest growing dinoflagellates. J. Phycol. 54:734-743.   DOI