Browse > Article
http://dx.doi.org/10.4490/algae.2021.36.12.7

A guide to phylotranscriptomic analysis for phycologists  

Cheon, Seongmin (School of Biological Science and Technology, Chonnam National University)
Lee, Sung-Gwon (School of Biological Science and Technology, Chonnam National University)
Hong, Hyun-Hee (School of Biological Science and Technology, Chonnam National University)
Lee, Hyun-Gwan (Department of Oceanography, Chonnam National University)
Kim, Kwang Young (Department of Oceanography, Chonnam National University)
Park, Chungoo (School of Biological Science and Technology, Chonnam National University)
Publication Information
ALGAE / v.36, no.4, 2021 , pp. 333-340 More about this Journal
Abstract
Phylotranscriptomics is the study of phylogenetic relationships among taxa based on their DNA sequences derived from transcriptomes. Because of the relatively low cost of transcriptome sequencing compared with genome sequencing and the fact that phylotranscriptomics is almost as reliable as phylogenomics, the phylotranscriptomic analysis has recently emerged as the preferred method for studying evolutionary biology. However, it is challenging to perform transcriptomic and phylogenetic analyses together without programming expertise. This study presents a protocol for phylotranscriptomic analysis to aid marine biologists unfamiliar with UNIX command-line interface and bioinformatics tools. Here, we used transcriptomes to reconstruct a molecular phylogeny of dinoflagellate protists, a diverse and globally abundant group of marine plankton organisms whose large and complex genomic sequences have impeded conventional phylogenic analysis based on genomic data. We hope that our proposed protocol may serve as practical and helpful information for the training and education of novice phycologists.
Keywords
dinoflagellate; phylotranscriptomics; protocol;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Irisarri, I., Baurain, D., Brinkmann, H., Delsuc, F., Sire, J. -Y., Kupfer, A., Petersen, J., Jarek, M., Meyer, A., Vences, M. & Philippe, H. 2017. Phylotranscriptomic consolidation of the jawed vertebrate timetree. Nat. Ecol. Evol. 1:1370-1378.   DOI
2 Janouskovec, J., Gavelis, G. S., Burki, F., Dinh, D., Bachvaroff, T. R., Gornik, S. G., Bright, K. J., Imanian, B., Strom, S. L., Delwiche, C. F., Waller, R. F., Fensome, R. A., Leander, B. S., Rohwer, F. L. & Saldarriaga, J. F. 2017. Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proc. Natl. Acad. Sci. U. S. A. 114:E171-E180.
3 Rokas, A., Williams, B. L., King, N. & Carroll, S. B. 2003. Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425:798-804.   DOI
4 Smith, S. A. & Dunn, C. W. 2008. Phyutility: a phyloinformatics tool for trees, alignments and molecular data. Bioinformatics 24:715-716.   DOI
5 Song, H., Bethoux, O., Shin, S., Donath, A., Letsch, H., Liu, S., McKenna, D. D., Meng, G., Misof, B., Podsiadlowski, L., Zhou, X., Wipfler, B. & Simon, S. 2020. Phylogenomic analysis sheds light on the evolutionary pathways towards acoustic communication in Orthoptera. Nat. Commun. 11:4939.   DOI
6 Wang, Z., Gerstein, M. & Snyder, M. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57-63.   DOI
7 Stephens, T. G., Ragan, M. A., Bhattacharya, D. & Chan, C. X. 2018. Core genes in diverse dinoflagellate lineages include a wealth of conserved dark genes with unknown functions. Sci. Rep. 8:17175.   DOI
8 Struck, T. H., Paul, C., Hill, N., Hartmann, S., Hosel, C., Kube, M., Lieb, B., Meyer, A., Tiedemann, R., Purschke, G. & Bleidorn, C. 2011. Phylogenomic analyses unravel annelid evolution. Nature 471:95-98.   DOI
9 von Reumont, B. M., Jenner, R. A., Wills, M. A., Dell'ampio, E., Pass, G., Ebersberger, I., Meyer, B., Koenemann, S., Iliffe, T. M., Stamatakis, A., Niehuis, O., Meusemann, K. & Misof, B. 2012. Pancrustacean phylogeny in the light of new phylogenomic data: support for Remipedia as the possible sister group of Hexapoda. Mol. Biol. Evol. 29:1031-1045.   DOI
10 Haas, B. J., Papanicolaou, A., Yassour, M., Grabherr, M., Blood, P. D., Bowden, J., Couger, M. B., Eccles, D., Li, B., Lieber, M., MacManes, M. D., Ott, M., Orvis, J., Pochet, N., Strozzi, F., Weeks, N., Westerman, R., William, T., Dewey, C. N., Henschel, R., LeDuc, R. D., Friedman, N. & Regev, A. 2013. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat. Protoc. 8:1494-1512.   DOI
11 Caron, D. A., Alexander, H., Allen, A. E., Archibald, J. M., Armbrust, E. V., Bachy, C., Bell, C. J., Bharti, A., Dyhrman, S. T., Guida, S. M., Heidelberg, K. B., Kaye, J. Z., Metzner, J., Smith, S. R. & Worden, A. Z. 2017. Probing the evolution, ecology and physiology of marine protists using transcriptomics. Nat. Rev. Microbiol. 15:6-20.   DOI
12 Strassert, J. F. H., Irisarri, I., Williams, T. A. & Burki, F. 2021. A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids. Nat. Commun. 12:1879.   DOI
13 Bolger, A. M., Lohse, M. & Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120.   DOI
14 Buchfink, B., Xie, C. & Huson, D. H. 2015. Fast and sensitive protein alignment using DIAMOND. Nat. Methods 12:59-60.   DOI
15 Burki, F., Roger, A. J., Brown, M. W. & Simpson, A. G. B. 2020. The new tree of eukaryotes. Trends Ecol. Evol. 35:43-55.   DOI
16 Camacho, C., Coulouris, G., Avagyan, V., Ma, N., Papadopoulos, J., Bealer, K. & Madden, T. L. 2009. BLAST+: architecture and applications. BMC Bioinformatics 10:421.   DOI
17 Cheon, S., Zhang, J. & Park, C. 2020. Is phylotranscriptomics as reliable as phylogenomics? Mol. Biol. Evol. 37:3672-3683.   DOI
18 Hittinger, C. T., Johnston, M., Tossberg, J. T. & Rokas, A. 2010. Leveraging skewed transcript abundance by RNA-Seq to increase the genomic depth of the tree of life. Proc. Natl. Acad. Sci. U. S. A. 107:1476-1481.   DOI
19 Delsuc, F., Brinkmann, H. & Philippe, H. 2005. Phylogenomics and the reconstruction of the tree of life. Nat. Rev. Genet. 6:361-375.   DOI
20 Emms, D. M. & Kelly, S. 2019. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20:238.   DOI
21 Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. 2012. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28:3150-3152.   DOI
22 Minh, B. Q., Schmidt, H. A., Chernomor, O., Schrempf, D., Woodhams, M. D., von Haeseler, A. & Lanfear, R. 2020. IQ-TREE 2: new models and efficient methods for phylogenetic inference in the genomic era. Mol. Biol. Evol. 37:1530-1534.   DOI
23 Wickett, N. J., Mirarab, S., Nguyen, N., Warnow, T., Carpenter, E., Matasci, N., Ayyampalayam, S., Barker, M. S., Burleigh, J. G., Gitzendanner, M. A., Ruhfel, B. R., Wafula, E., Der, J. P., Graham, S. W., Mathews, S., Melkonian, M., Soltis, D. E., Soltis, P. S., Miles, N. W., Rothfels, C. J., Pokorny, L., Shaw, A. J., DeGironimo, L., Stevenson, D. W., Surek, B., Villarreal, J. C., Roure, B., Philippe, H., dePamphilis, C. W., Che, T., Deyholos, M. K., Baucom, R. S., Kutchan, T. M., Augustin, M. M., Wang, J., Zhang, Y., Tian, Z., Yan, Z., Wu, X., Sun, X., Wong, G. K. -S. & Lee-bens-Mack, J. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proc. Natl. Acad. Sci. U. S. A. 111:E4859-E4868.
24 Zeng, L., Zhang, Q., Sun, R., Kong, H., Zhang, N. & Ma, H. 2014. Resolution of deep angiosperm phylogeny using conserved nuclear genes and estimates of early divergence times. Nat. Commun. 5:4956.   DOI
25 Zou, Z. & Zhang, J. 2016. Morphological and molecular convergences in mammalian phylogenetics. Nat. Commun. 7:12758.   DOI
26 Murat, F., Armero, A., Pont, C., Klopp, C. & Salse, J. 2017. Reconstructing the genome of the most recent common ancestor of flowering plants. Nat. Genet. 49:490-496.   DOI
27 Price, D. C. & Bhattacharya, D. 2017. Robust Dinoflagellata phylogeny inferred from public transcriptome databases. J. Phycol. 53:725-729.   DOI
28 Martin, J. A. & Wang, Z. 2011. Next-generation transcriptome assembly. Nat. Rev. Genet. 12:671-682.   DOI
29 Riesgo, A., Farrar, N., Windsor, P. J., Giribet, G. & Leys, S. P. 2014. The analysis of eight transcriptomes from all poriferan classes reveals surprising genetic complexity in sponges. Mol. Biol. Evol. 31:1102-1120.   DOI
30 Kocot, K. M., Cannon, J. T., Todt, C., Citarella, M. R., Kohn, A. B., Meyer, A., Santos, S. R., Schander, C., Moroz, L. L., Lieb, B. & Halanych, K. M. 2011. Phylogenomics reveals deep molluscan relationships. Nature 477:452-456.   DOI
31 Meusemann, K., von Reumont, B. M., Simon, S., Roeding, F., Strauss, S., Kuck, P., Ebersberger, I., Walzl, M., Pass, G., Breuers, S., Achter, V., von Haeseler, A., Burmester, T., Hadrys, H., Wagele, J. W. & Misof, B. 2010. A phylogenomic approach to resolve the arthropod tree of life. Mol. Biol. Evol. 27:2451-2464.   DOI