Browse > Article
http://dx.doi.org/10.4490/algae.2020.35.5.25

The influence of marine algae on iodine speciation in the coastal ocean  

Carrano, Mary W. (Department of Chemistry and Biochemistry, San Diego State University)
Yarimizu, Kyoko (Department of Chemistry and Biochemistry, San Diego State University)
Gonzales, Jennifer L. (Department of Chemistry and Biochemistry, San Diego State University)
Cruz-Lopez, Ricardo (Department of Chemistry and Biochemistry, San Diego State University)
Edwards, Matthew S. (Department of Biology, San Diego State University)
Tymon, Teresa M. (Department of Chemistry and Biochemistry, San Diego State University)
Kupper, Frithjof C. (School of Biological Sciences, University of Aberdeen)
Carrano, Carl J. (Department of Chemistry and Biochemistry, San Diego State University)
Publication Information
ALGAE / v.35, no.2, 2020 , pp. 167-176 More about this Journal
Abstract
Iodine exists as a trace element in seawater, with total iodine being generally constant at about 0.45-0.55 μM. Almost all of this iodine occurs in two main forms: iodate and iodide. Iodate is the thermodynamically stable form under normal seawater conditions, and thus should be the only iodine-containing species in the water column. However, iodate concentrations are found to vary considerably, being generally greater at depth and lower at the surface, while iodide concentrations follow the reverse pattern, being anomalously accumulated in the euphotic zone and decreasing with depth. The fact that iodide concentrations follow a depth dependence corresponding to the euphotic zone suggests that biological activity is the source of the reduced iodine. Nonetheless, the nature and source of iodate reduction activity remains controversial. Here, using a combination of field and laboratory studies, we examine some of the questions raised in our and other previous studies, and seek further correlations between changes in iodine speciation and the presence of marine macro- and microalgae. The present results indicate that microalgal growth per se does not seem to be responsible for the reduction of iodate to iodide. However, there is some support for the hypothesis that iodate reduction can occur due to release of cellular reducing agents that accompany cell senescence during phytoplankton bloom declines. In addition, support is given to the concept that macroalgal species such as giant kelp (Macrocystis pyrifera) can take up both iodide and iodate from seawater (albeit on a slower time scale). We propose a mechanism whereby iodate is reduced to iodide at the cell surface by cell surface reductases and is taken up directly as such without reentering the bulk solution.
Keywords
Ectocarpus; iodate; iodide; iodine speciation; Lingulodinium; Macrocystis; phytoplankton;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Bluhm, K., Croot, P., Wuttig, K. & Lochte, K. 2010. Transformation of iodate to iodide in marine phytoplankton driven by cell senescence. Aquat. Biol. 11:1-15.   DOI
2 Bottger, L. H., Miller, E. P., Andresen, C., Matzanke, B. F., Kupper, F. C. & Carrano, C. J. 2012. Atypical iron storage in marine brown algae: a multidisciplinary study of iron transport and storage in Ectocarpus siliculosus. J. Exp. Bot. 63:5663-5772.
3 Butler, E. C. V., Smith, J. D. & Fisher, N. S. 1981. Influence of phytoplankton on iodine speciation in seawater. Limnol. Oceanogr. 26:382-386.   DOI
4 Campos, M. L. A. M., Farrenkopf, A. M., Jickells, T. D. & Luther, G. W. 1996. A comparison of dissolved iodine cycling at the Bermuda Atlantic Time-series Station and Hawaii Ocean Time-series Station. Deep Sea Res. Part II Top. Stud. Oceanogr. 43:455-466.   DOI
5 Campos, M. L. A. M., Sanders, R. & Jickells, T. 1999. The dissolved iodate and iodide distribution in the South Atlantic from the Weddell Sea to Brazil. Mar. Chem. 65:167-175.   DOI
6 Carpenter, L. J. 2003. Iodine in the marine boundary layer. Chem. Rev. 103:4953-4962.   DOI
7 Chance, R., Baker, A. R., Carpenter, L. & Jickells, T. D. 2014. The distribution of iodide at the sea surface. Environ. Sci. Process. Impacts 16:1841-1859.   DOI
8 Chance, R., Baker, A. R., Küpper, F. C., Hughes, C., Kloareg, B. & Malin, G. 2009. Release and transformations of inorganic iodine by marine macroalgae. Estuar. Coast. Shelf Sci. 82:406-414.   DOI
9 Cock, J. M., Sterck, L., Rouze, P., Scornet, D., Allen, A. E., Amoutzias, G., Anthouard, V., Artiguenave, F., Aury, J.-M., Badger, J. H., Beszteri, B., Billiau, K., Bonnet, E., Bothwell, J. H., Bowler, C., Boyen, C., Brownlee, C., Carrano, C. J., Charrier, B., Cho, G. Y., Coelho, S. M., Collen, J., Corre, E., Da Silva, C., Delage, L., Delaroque, N., Dittami, S. M., Doulbeau, S., Elias, M., Farnham, G., Gachon, C. M. M., Gschloessl, B., Heesch, S., Jabbari, K., Jubin, C., Kawai, H., Kimura, K., Kloareg, B., Kupper, F. C., Lang, D., Le Bail, A., Leblanc, C., Lerouge, P., Lohr, M., Lopez, P. J., Martens, C., Maumus, F., Michel, G., Miranda-Saavedra, D., Morales, J., Moreau, H., Motomura, T., Nagasato, C., Napoli, C. A., Nelson, D. R., Nyvall-Collen, P., Peters, A. F., Pommier, C., Potin, P., Poulain, J., Quesneville, H., Read, B., Rensing, S. A., Ritter, A., Rousvoal, S., Samanta, M., Samson, G., Schroeder, D. C., Segurens, B., Strittmatter, M., Tonon, T., Tregear, J. W., Valentin, K., von Dassow, P., Yamagishi, T., Van de Peer, Y. & Wincker, P. 2010. The Ectocarpus genome and the independent evolution of multicellularity in the brown algae. Nature 465:617-621.   DOI
10 Davis, D., Crawford, J., Liu, S., McKeen, S., Bandy, A., Thornton, D., Rowland, F. & Blake, D. 1996. Potential impact of iodine on tropospheric levels of ozone and other critical oxidants. J. Geophys. Res. 101:2135-2147.   DOI
11 Farrenkopf, A. M., Dollhopf, M. E., Chadhain, S. N., Luther, G. W. & Nealson, K. H. 1997. Reduction of iodate in seawater during Arabian Sea shipboard incubations and in laboratory cultures of the marine bacterium Shewanella putrefaciens strain MR-4. Mar. Chem. 57:347-354.   DOI
12 Gonzales, J., Tymon, T., Kupper, F. C., Edwards, M. S. & Carrano, C. J. 2017. The potential role of kelp forests on iodine speciation in coastal seawater. PLoS ONE 12:e0180755.   DOI
13 Hardisty, D. S., Lu, Z., Planavsky, N. J., Bekker, A., Philippot, P., Zhou, X. & Lyons, T. W. 2014. An iodine record of Paleoproterozoic surface ocean oxygenation. Geology 42:619-622.   DOI
14 Herring, J. R. & Liss, P. S. 1973. A new method for the determination of iodine species in seawater. Deep-Sea Res. Oceanogr. Abstr. 21:777-783.   DOI
15 Kupper, F. C., Schweigert, N., Ar Gall, E., Legendre, J. -M., Vilter, H. & Kloareg, B. 1998. Iodine uptake in Laminariales involves extracellular, haloperoxidase-mediated oxidation of iodide. Planta 207:163-171.   DOI
16 Kupper, F. C., Carpenter, L. J., McFiggans, G. B., Palmer, C. J., Waite, T. J., Boneberg, E. -M., Woitsch, S., Weiller, M., Abela, R., Grolimund, D., Potin, P., Butler, A., Luther, G. W. 3rd., Kroneck, P. M. H., Meyer-Klaucke, W. & Feiters, M. C. 2008. Iodide accumulation provides kelp with an inorganic antioxidant impacting atmospheric chemistry. Proc. Natl. Acad. Sci. U. S. A. 105:6954-6958.   DOI
17 Kupper, F. C. & Carrano, C. J. 2019. Key aspects of the iodine metabolism of brown algae: a brief critical review. Metallomics 11:756-764.   DOI
18 Kupper, F. C., Miller, E. P., Andrews, S. J., Hughes, C., Carpenter, L. J., Meyer-Klaucke, W., Toyama, C., Muramatsu, Y., Feiters, M. C. & Carrano, C. J. 2018. Emission of volatile halogenated compounds, speciation and localization of bromine and iodine in the brown algal genome model Ectocarpus siliculosus. J. Biol. Inorg. Chem. 23:1119-1128.   DOI
19 Lucia, M. & Campos, A. M. 1997. New approach to evaluating dissolved iodine speciation in natural waters using cathodic stripping voltammetry and a storage study for preserving iodine species. Mar. Chem. 57:107-117.   DOI
20 Luther, G. W., Swartz, C. B. & Ullman, W. J. 1988. Direct determination of iodide in seawater by cathodic stripping square wave voltammetry. Anal. Chem. 60:1721-1724.   DOI
21 Luther, G. W., Wu, J. & Cullen, J. B. 1995. Redox chemistry of iodine in seawater: frontier molecular orbital theory considerations. In Huang, C. P., O'Melia, C. R. & Morgan, J. J. (Eds.) Aquatic Chemistry. Vol. 244. American Chemical Society, Washington, DC, pp. 135-155.
22 Saiz-Lopez, A., Plane, J. M. C., Baker, A. R., Carpenter, L. J., von Glasow, R., Martin, J. C. G., McFiggans, G. & Saunders, R. W. 2012. Atmospheric chemistry of iodine. Chem. Rev. 112:1773-1804.   DOI
23 Moorthi, S. D., Countway, P. D., Stauffer, B. A. & Caron, D. A. 2006. Use of quantitative real-time PCR to investigate the dynamics of the red tide dinoflagellate Lingulodinium polyedrum. Microb. Ecol. 52:136-150.   DOI
24 O'Dowd, C. D., Jimenez, J. L., Bahreini, R., Flagan, R. C., Seinfeld, J. H., Hameri, K., Pirjola, L., Kulmala, M., Jennings, S. G. & Hoffmann, T. 2002. Marine aerosol formation from biogenic iodine emissions. Nature 417:632-636.   DOI
25 Quack, B., Atlas, E., Petrick, G., Stroud, V., Schauffler, S. & Wallace, D. W. R. 2004. Oceanic bromoform sources for the tropical atmosphere. Geophys. Res. Lett. 31:L23S05.
26 Saiz-Lopez, A., Plane, J. M. C., McFiggans, G., Williams, P. I., Ball, S. M., Bitter, M., Jones, R. L., Hongwei, C. & Hoffmann, T. 2006. Modelling molecular iodine emissions in a coastal marine environment: the link to new particle formation. Atmos. Chem. Phys. 6:883-895.   DOI
27 Salawitch, R. J., Weisenstein, D. K., Kovalenko, L. J., Sioris, C. E., Wennberg, P. O., Chance, K., Ko, M. K. W. & McLinden, C. A. 2005. Sensitivity of ozone to bromine in the lower stratosphere. Geophys. Res. Lett. 32:L05811.
28 Starr, R. C. & Zeikus, J. A. 1993. UTEX: the culture collection of algae at the University of Texas at Austin 1993 list of cultures. J. Phycol. 29(Suppl.):1-106.   DOI
29 Takayanagi, K. & Wong, G. T. F. 1986. The oxidation of iodide to iodate for the polarographic determination of total iodine in natural waters. Talanta 33:451-454.   DOI
30 Truesdale, V. W. 1978. The automatic determination of iodate- and total-iodine in seawater. Mar. Chem. 6:253-273.   DOI
31 Wong, G. T. F., Piumsomboon, A. U. & Dunstan, W. M. 2002. The transformation of iodate to iodide in marine phytoplankton cultures. Mar. Ecol. Prog. Ser. 237:27-39.   DOI
32 Truesdale, V. W. 2008. The biogeochemical effect of seaweeds upon close-to natural concentrations of dissolved iodate and iodide in seawater: preliminary study with Laminaria digitata and Fucus serratus. Estuar. Coast. Shelf Sci. 78:155-165.   DOI
33 Truesdale, V. W., Kennedy, H., Agusti, S. & Waite, T. J. 2003. On the relative constancy of iodate and total-iodine concentrations accompanying phytoplankton blooms initiated in mesocosm experiments in Antarctica. Limnol. Oceanogr. 48:1569-1574.   DOI
34 Tymon, T. M., Miller, E. P., Gonzalez, J. L., Raab, A., Kupper, F. C. & Carrano, C. J. 2017. Some aspects of the iodine metabolism of the giant kelp Macrocystis pyrifera (Phaeophyta). J. Inorg. Biochem. 177:82-88.   DOI
35 Yarimizu, K., Cruz-Lopez, R., Auerbach, H., Heimann, L., Schunemann, V. & Carrano, C. J. 2017. Iron uptake and storage in the HAB dinoflagellate Lingulodinium polyedrum. BioMetals 30:945-953.   DOI
36 Yarimizu, K., Cruz-Lopez, R., Garcia-Mendoza, E., Edwards, M., Carter, M. L. & Carrano, C. J. 2019. Distribution of dissolved iron and bacteria producing the photoactive siderophore, vibrioferrin, in waters off Southern California and Northern Baja. BioMetals 32:139-154.   DOI