Browse > Article
http://dx.doi.org/10.4490/algae.2019.34.8.15

Platysiphon verticillatus and Arcticophycus glacialis: gen. et comb. nov. (Stschapoviales, Phaeophyceae) based on ecological considerations, life history, morphology, and ultrastructure  

Wilce, Robert T. (Department of Biology, 221 Morrill Science Center, 611 North Pleasant Street, University of Massachusetts)
Bradley, Peter M. (Department of Biology, Worcester State University)
Publication Information
ALGAE / v.34, no.3, 2019 , pp. 199-216 More about this Journal
Abstract
Platysiphon verticillatus and Punctaria glacialis are synonymized by mainly on the basis of shared genes, nine identical sequences. Our hypothesis is that synonymy is erroneous. We posit the many differences of biological features between the two species, their ecological preferences, and occurrences do not support synonymy. Arcticophycus (nov. gen.) is described and contains the new combination Arcticophycus glacialis. Asexual, vegetative, life histories are proposed. Novel reproductive structures are described including previously unknown features of thallus development in the life history of both species. Discovery of the novel Platysiphon cyst, and dual sporangia types in Arcticophycus, is critical in establishing a probable strategy for survival through the Arctic winter for each annual species. Pl. verticillatus is erect, tubular, ovoid to circular in X sections, flaccid, non-parenchymatous, light brown, 10-15 cm high with distinctive photosynthetic hairs in clusters or whorled on the upper one third of the thallus. A. glacialis is erect, planar, robust, parenchymatous, dark brown and hairs absent. The Halosiphon clade is named, consisting of four genera: Halosiphon, Platysiphon, Arcticophycus, and Stschapovia. Occurrence of these genera is identified. Emended are the genus Platysiphon, the family Platysiphonaceae and the order Stschapoviales.
Keywords
Arcticophycus; Halosiphon; Platysiphon; Punctaria; Stschapovia; taxonomic criteria;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Augyte, S., Lewis, L., Lin, S., Neefus, C. D. & Yarish, C. 2018. Speciation in the exposed intertidal zone: the case of Saccharina angustissima comb. nov. & stat. nov. (Laminariales, Phaeophyceae). Phycologia 57:100-112.   DOI
2 Baker, J. R. J. & Evans, L. V. 1973. The ship fouling alga Ectocarpus I. Ultrastructure and cytochemistry of plurilocular reproductive stages. Protoplasma 77:181-189.   DOI
3 Bringloe, T. T. & Saunders, G. W. 2017. Molecular data reveal the postglacial origins of the Northwest Atlantic marine algal flora: assessing the European origins paradigm. In 56th Northeast Algal Symp., Bretton Woods, NH, Abstract #2.
4 Bringloe, T. T. & Saunders, G. W. 2018. Trans-arctic speciation of Florideophyceae (Rhodophyta) since the opening of the Bering Strait, with consideration of the "species pump" hypothesis. In 57th Northeast Algal Symp., University of New Haven, New Haven, CT, Abstract #2.
5 Campagna, L., Repenning, M., Silveira, L. F., Fontana, C. S., Tubaro, P. L. & Lovette, I. J. 2017. Repeated divergent selection on pigmentation genes in rapid finch radiation. Sci. Adv. 3:e1602404.   DOI
6 Chandler, D. E. & Roberson, R. W. 2009. Bioimaging: current concepts in light and electron microscopy. Jones & Bartlett Publishers, Sudbury, MA, 440 pp.
7 Collins, F. S. 1927. Marine algae from the Bering Strait and Arctic collected by the Canadian Arctic Expedition 1913-1916. Report of the Canadian Arctic Expedition, 1913-1918, Part B. 4:3-16.
8 Diaz-Tapia, P., Passella, M. & Veerbruggen, H. 2017. Molecular analyses resolve the phylogenetic position of Polysiphonia adamsiae (Rhodomelaceae, Rhodophyta) and reveal a strong phylogeographic structure in Australia. Phycologia 57:593-600.   DOI
9 Elias, M., Faria, R., Gompert, Z. & Hendry, A. 2012. Factors influencing progress toward ecological speciation. Int. J. Ecol. 2012:235010.
10 Fletcher, R. L. 1980. Studies on the recently introduced brown alga Sargassum muticum (Yendo) Fensholt. III. Periodicity in gamete release and "incubation" of early germling stages. Bot. Mar. 23:425-432.
11 Fletcher, R. L. 1987. Seaweeds of the British Isles, Vol. 3. Fucophyceae (Phaeophyceae). Part 1. British Museum Natural History, London, 359 pp.
12 Fletcher, R. L., Jones, A. M. & Jones, E. B. G. 1984. The attachment of fouling macroalgae. In Costlow, J. D. & Tipper, R. C. (Eds.) Marine Biodeterioration: An Interdisciplinary Study. Naval Institute Press, Annapolis, MD, pp. 172-182.
13 Hayat, M. A. 1981. Fixation for electron microscopy. Academic Press, New York, 521 pp.
14 Henry, E. C. 1984. Syringodermatales ord. nov. and Syringoderma floridana sp. nov. (Phaeophyceae). Phycologia 23:419-426.   DOI
15 Hu, H. Y., He, L., Fominykh, K., Yan, Z., Guo, S., Zhang, X., Taylor, M. S., Tang, L., Li, J., Liu, J., Wang, W., Yu, H. & Khaitovich, P. 2012. Evolution of the human-specific microRNA miR-941. Nat. Commun. 3:1145.   DOI
16 Jaasund, E. 1957. Marine algae from northern Norway. II. Bot. Not. 110:205-231.
17 Jarvis, E. D., Mirarab, S., Aberer, A. J., Li, B., Houde, P., Li, C., Ho, S. Y., Faircloth, B. C., Nabholz, B., Howard, J. T., Suh, A., Weber, C. C., da Fonseca, R. R., Li, J., Zhang, F., Li, H., Zhou, L., Narula, N., Liu, L., Ganapathy, G., Boussau, B., Bayzid, M. S., Zavidovych, V., Subramanian, S., Gabaldon, T., Capella-Gutierrez, S., Huerta-Cepas, J., Rekepalli, B., Munch, K., Schierup, M., Lindow, B., Warren, W. C., Ray, D., Green, R. E., Bruford, M. W., Zhan, X., Dixon, A., Li, S., Li, N., Huang, Y., Derryberry, E. P., Bertelsen, M. F., Sheldon, F. H., Brumfield, R. T., Mello, C. V., Lovell, P. V., Wirthlin, M., Schneider, M. P., Prosdocimi, F., Samaniego, J. A., Vargas Velazquez, A. M., Alfaro-Nunez, A., Campos, P. F., Petersen, B., Sicheritz-Ponten, T., Pas, A., Bailey, T., Scofield, P., Bunce, M., Lambert, D. M., Zhou, Q., Perelman, P., Driskell, A. C., Shapiro, B., Xiong, Z., Zeng, Y., Liu, S., Li, Z., Liu, B., Wu, K., Xiao, J., Yinqi, X., Zheng, Q., Zhang, Y., Yang, H., Wang, J., Smeds, L., Rheindt, F. E., Braun, M., Fjeldsa, J., Orlando, L., Barker, F. K., Jonsson, K. A., Johnson, W., Koepfli, K. P., O'Brien, S., Haussler, D., Ryder, O. A., Rahbek, C., Willerslev, E., Graves, G. R., Glenn, T. C., McCormack, J., Burt, D., Ellegren, H., Alström, P., Edwards, S. V., Stamatakis, A., Mindell, D. P., Cracraft, J., Braun, E. L., Warnow, T., Jun, W., Gilbert, M. T. & Zhang, G. 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346:1320-1331.   DOI
18 Kawai, H., Hanyuda, T., Draisma, S. G. A., Wilce, R. T. & Andersen, R. A. 2015a. Molecular phylogeny of two unusual brown algae, Phaeostrophion irregulare and Platysiphon glacialis, proposal of the Stschapoviales ord. nov. and Platysiphonaceae fam. nov. and a re-examination of divergence times for brown algal orders. J. Phycol. 52:918-928.
19 Kawai, H. & Sasaki, H. 2001. Molecular phylogeny of the brown algal genera Akkesiphycus and Halosiphon (Laminariales), resulting in the circumscription of the new families Akkesiphycaceae and Halosiphonaceae. Phycologia 39:416-428.   DOI
20 Kawai, H., Hanyuda, T., Yamagishi, T., Kai, A., Lane, C. E., McDevit, D., Kuepper, F. C. & Saunders, G. W. 2015b. Reproductive morphology and DNA sequences of the brown alga Platysiphon verticillatus support the new combination Platysiphon glacialis. J. Phycol. 51:910-917.   DOI
21 Kawai, H. & Sasaki, H. 2004. Morphology, life history, and molecular phylogeny of Stschapovia flagellaris (Tilopteridales, Phaeophyceae), and the erection of the Stschapoviaceae fam. nov. J. Phycol. 40:1156-1169.   DOI
22 Kirkpatrick, M. 2010. How and why chromosome inversions evolve. PLoS Biol. 8:e1000501.   DOI
23 Kuckuck, P. (in Reinbold, T.) 1893. Die Phaeophyceen, (Brauntange) der Kieler Fohrde. Schr. Naturwiss. Ver. Schlesw.-Holst. 10:21-59.
24 Kupper, F., Peters, A. F., Shewring, D. M., Sayer, M. D. J., Mystikou, A., Brown, H., Azzopardi, E., Dargent, O., Strittmatter, M., Brennan, D., Asensi, A. O., van West, P. & Wilce, R. T. 2016. Arctic marine phytobenthos of northern Baffin Island. J. Phycol. 52:532-549.   DOI
25 Lane, C. E., Lindstom, S. C. & Saunders, G. W. 2007. A molecular assessment of northeast Pacific Alaria species (Laminariales, Phaeophyceae) with reference to the utility of DNA barcoding. Mol. Phylogenet. Evol. 44:634-648.   DOI
26 Lane, C. E., Mayes, C., Druehl, L. D. & Saunders, G. W. 2006. A multi-gene molecular investigation of the kelps (Laminariales, Phaeophyceae) supports substantial taxonomic re-organization. J. Phycol. 42:493-512.   DOI
27 Ledford, H. 2018. The lost art of looking at plants: advances in genomics and imaging are reviving a fading discipline. Nature 553:396-398.   DOI
28 Leliaert, F., Verbruggen, H., Vanormelingen, P., Steen, F., Lopez-Bautista, J. M., Zuccarello, G. C. & De Clerck, O. 2014. DNA-based species delimitation in algae. Eur. J. Phycol. 49:179-196.   DOI
29 Lee, R. K. S. 1980. A catalog of the marine algae of the Canadian Arctic. Publication in botany, No. 9. National Museums of Canada, Ottawa, 82 pp.
30 Leliaert, F. & De Clerck, O. 2017. Refining species boundaries in algae. J. Phycol. 53:12-16.   DOI
31 Leonard, P. 2017. How can 9 species look so different yet be genetically almost identical? Available from: https://www.allaboutbirds.org/how-can-9-species-look-so-different-yet-be-genetically-almost-identical/. Accessed Nov 15, 2018.
32 Lund, S. 1933. The marine algae of the Godthaab Expedition 1928. Medd. Gronl. 82:1-18.
33 Lund, S. 1959a. The marine algae of east Greenland. I. Taxonomical part. Medd. Gronl. 156:1-247.
34 Lund, S. 1959b. The marine algae of east Greenland. II. Geographic distribution. Medd. Gronl. 156:1-70.
35 Luning, K. & Tom Dieck, I. 1989. The distribution and rvolution of the Laminariales: North Pacific -Atlantic relationships. In Garbary, D. J. & South, G. R. (Eds.) Evolutionary Biogeography of the Marine Algae of the North Atlantic. NATO ASI Series (Series G: Ecological Sciences), Vol. 22. Springer, Berlin, pp. 187-204.
36 Lyngbye, H. C. 1819. Tentamen hydrophytologie danicae. Hafniae, 248 pp.
37 Maggs, C. A. 1989. Distribution and evolution of non-coralline crustose red algae in the North Atlantic. In Garbary, D. J. & South, G. R. (Eds.) Evolutionary Biogeography of the Marine Algae of the North Atlantic. NATO ASI Series (Series G: Ecological Sciences), Vol. 22. Springer, Berlin, pp. 241-264.
38 Wilce, R. T. 2016. The "Arctic Stamp", its imprint on an endangered marine flora - the Arctic benthic algal flora and its environment seen from 65 years of Arctic research. Perspect. Phycol. 3:155-180.   DOI
39 Wilce, R. T. 1962. A new member of the Punctariaceae: Platysiphon verticillatus gen. nov., sp. nov. Bot. Tidsskr. 58:35-42.
40 Wilce, R. T. 1989. Role of the Arctic Ocean as a bridge between the Atlantic and Pacific Oceans: fact and hypothesis. In Garbary, D. J. & South, G. R. (Eds.) Evolutionary Biogeography of the Marine Algae of the North Atlantic. NATO ASI Series (Series G: Ecological Sciences), Vol. 22. Springer, Berlin, pp. 323-347.
41 Wilce, R. T. & Bradley, P. M. 2007. Enigmatic reproductive structures in Platysiphon verticillatus Wilce (1962): an arctic endemic. In Abstracts, Joint Meeting of Phycological Society of America and International Society of Protositologists, Phycological Society of America, Lawrence, KS, p. 69.
42 Wilce, R. T. & Pedersen, P. M. 2003. Professor Rosenvinge's curious Punctaria. In Abstract from Professor Rosenvinge's curious Punctaria. Annual General Meeting, Programme & Abstracts, Vol. 64 Supplement, British Phycological Society, London, p. 20.
43 Olli, K. 1996. Resting cyst formation of Eutreptiella gymnastica (Euglenophyceae) in the northern coastal Baltic Sea. J. Phycol. 32:535-542.   DOI
44 Mann, D. G. 2010. Discovering diatom species: is a long history of disagreements about species-level taxonomy now at an end? Plant Ecol. Evol. 143:251-264.   DOI
45 Mathieson, A. C. & Dawes, C. J. 2017. Seaweeds of the northwest Atlantic. University of Massachusetts Press, Amherst, MA, 798 pp.
46 Nilsson, R. H., Ryberg, M., Kristiansson, E., Abarenkov, K., Larsson, K. -H. & Koljalg, U. 2006. Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS ONE 1:e59.   DOI
47 Ostevik, K. L., Moyers, B. T., Owens, G. L. & Rieseberg, L. H. 2012. Parallel ecological speciation in plants. Int. J. Ecol. 2012:939862.
48 Pall-Gergely, B. 2017. Should we describe genera without molecular phylogenies? Zootaxa 4232:zootaxa.4232.4.11.
49 Pedersen, P. M. 2011. Gronlands havalger. Forlaget Epsilon, Copenhagen, 208 pp.
50 Rosenvinge, L. K. 1910. On the marine algae from North-East Greenland (N of 76$^{\circ}$ N. Lat.) collected by the Danmark Expedition. Medd. Gronl. 43:93-133.
51 Setchell, W. A. & Gardner, N. L. 1924. New marine algae from the Gulf of California. Proc. Calif. Acad. Sci. Ser. 4. 12:695-949.
52 Toth, R. 1976. The release, settlement and germination of zoospores in Chorda tomentosa (Phaeophyceae, Laminariales). J. Phycol. 12:222-233.   DOI
53 Van Oppen, M. J. H., Draisma, S. G. A., Olsen, J. L. & Stam, W. T. 1995. Multiple trans-Arctic passages in the red alga Phycodrys rubens: evidence from nuclear rDNA ITS sequences. Mar. Biol. 123:179-188.   DOI
54 Zuccarello, G. C., West, J. A. & Kamiya, M. 2017. Non-monophyly of Bostrychia simpliciuscula (Ceramiales, Rhodophyta): multiple species with very similar morphologies, a revised taxonomy of cryptic species. Phycol. Res. 66:100-107.   DOI
55 Zinova, A. D. 1954. A new family, a new genus and a new species of brown algae. Bot. Inst. Komarova Acad. Nauk S.S.S.R. Ser. II 9:223-244 (in Russian).