Browse > Article
http://dx.doi.org/10.4490/algae.2019.34.2.25

Novel approaches for generating and manipulating diploid strains of Chlamydomonas reinhardtii  

Kariyawasam, Thamali (Department of Botany, University of British Columbia)
Joo, Sunjoo (Department of Botany, University of British Columbia)
Goodenough, Ursula (Department of Biology, Washington University)
Lee, Jae-Hyeok (Department of Botany, University of British Columbia)
Publication Information
ALGAE / v.34, no.1, 2019 , pp. 35-43 More about this Journal
Abstract
Genetic study of haploid organisms offers the advantage that mutant phenotypes are directly displayed, but has the disadvantage that strains carrying lethal mutations are not readily maintained. We describe an approach for generating and performing genetic analysis of diploid strains of Chlamydomonas reinhardtii, which is normally haploid. First protocol utilizes self-mating diploid strains that will facilitate the genetic analysis of recessive lethal mutations by offering a convenient way to produce homozygous diploids in a single mating. Second protocol is designed to reduce the chance of contamination and the accumulation of spontaneous mutations for long-term storage of mutant strains. Third protocol for inducing the meiotic program is also included to produce haploid mutant strains following tetraploid genetic analysis. We discuss implication of self-fertile strains for the future of Chlamydomonas research.
Keywords
Chlamydomonas; complementation analysis; homeoproteins; iso1; isoagglutination; self-mating; tetraploid genetics;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Campbell, A. M., Rayala, H. J. & Goodenough, U. W. 1995. The iso1 gene of Chlamydomonas is involved in sex determination. Mol. Biol. Cell 6:87-95.   DOI
2 Dent, R. M., Sharifi, M. N., Malnoe, A., Haglund, C., Calderon, R. H., Wakao, S. & Niyogi, K. K. 2015. Large-scale insertional mutagenesis of Chlamydomonas supports phylogenomic functional prediction of photosynthetic genes and analysis of classical acetate-requiring mutants. Plant J. 82:337-351.   DOI
3 Dutcher, S. K. 1988. Nuclear fusion-defective phenocopies in Chlamydomonas reinhardtii: mating-type functions for meiosis can act through the cytoplasm. Proc. Natl. Acad. Sci. U. S. A. 85:3946-3950.   DOI
4 Ebersold, W. T. 1967. Chlamydomonas reinhardi: heterozygous diploid strains. Science 157:447-449.   DOI
5 Ferris, P. J. & Goodenough, U. W. 1997. Mating type in Chlamydomonas is specified by mid, the minus-dominance gene. Genetics 146:859-869.   DOI
6 Ferris, P. J., Woessner, J. P. & Goodenough, U. W. 1996. A sex recognition glycoproteins is encoded by the plus mating-type gene fus1 of Chlamydomonas reinhardtii. Mol. Biol. Cell 7:1235-1248.   DOI
7 Flint, J. & Mackay, T. F. 2009. Genetic architecture of quantitative traits in mice, flies, and humans. Genome Res. 19:723-733.   DOI
8 Galloway, R. E. & Holden, L. R. 1984. Transmission and recombination of chloroplast genes in asexual crosses of Chlamydomonas reinhardii. I. Flagellar agglutination prior to fusion does not promote uniparental inheritance or affect recombination frequencies. Curr. Genet. 8:399-405.   DOI
9 Gallaher, S. D., Fitz-Gibbon, S. T., Glaesener, A. G., Pellegrini, M. & Merchant, S. S. 2015. Chlamydomonas genome resource for laboratory strains reveals a mosaic of sequence variation, identifies true strain histories, and enables strain-specific studies. Plant Cell 27:2335-2352.   DOI
10 Galloway, R. E. & Goodenough, U. W. 1985. Generic analysis of mating locus linked mutations in Chlamydomonas reinhardtii. Genetics 111:447-461.   DOI
11 Geng, S., De Hoff, P. & Umen, J. G. 2014. Evolution of sexes from an ancestral mating-type specification pathway. PLoS Biol. 12:e1001904.   DOI
12 Geng, S., Miyagi, A. & Umen, J. G. 2018. Evolutionary divergence of the sex-determining gene MID uncoupled from the transition to anisogamy in volvocine algae. Development 145:dev162537.   DOI
13 Gonzalez-Ballester, D., Pootakham, W., Mus, F., Yang, W., Catalanotti, C., Magneschi, L., de Montaigu, A., Higuera, J. J., Prior, M., Galvan, A., Fernandez, E. & Grossman, A. R. 2011. Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants. Plant Methods 7:24.   DOI
14 Greiner, A., Kelterborn, S., Evers, H., Kreimer, G., Sizova, I. & Hegemann, P. 2017. Targeting of photoreceptor genes in Chlamydomonas reinhardtii via zinc-finger nucleases and CRISPR/Cas9. Plant Cell 29:2498-2518.   DOI
15 Li, X., Zhang, R., Patena, W., Gang, S. S., Blum, S. R., Ivanova, N., Yue, R., Robertson, J. M., Lefebvre, P. A., Fitz-Gibbon, S. T., Grossman, A. R. & Jonikas, M. C. 2016. An indexed, mapped mutant library enables reverse genetics studies of biological processes in Chlamydomonas reinhardtii. Plant Cell 28:367-387.   DOI
16 Harris, E. H. 1989. The Chlamydomonas sourcebook: a comprehensive guide to biology and laboratory use. Academic Press, San Diego, CA, 780 pp.
17 Lee, J. -H., Lin, H., Joo, S. & Goodenough, U. 2008. Early sexual origins of homeoprotein heterodimerization and evolution of the plant KNOX/BELL family. Cell 133:829-840.   DOI
18 Lewin, R. A. 1951. Isolation of sexual strains of Chlamydomonas. J. Gen. Microbiol. 5:926-929.   DOI
19 Lin, H. 2006. Characterization of two minus-specific genes, MID and MTD1, and a sex-limited mutant, ISO1, involved in Chlamydomonas gametogenesis. Ph.D. dissertation, Washington University, St. Louis, MO, USA, 190 pp.
20 Lin, H., Cliften, P. F. & Dutcher, S. K. 2018. MAPINS, a highly efficient detection method that identifies insertional mutations and complex DNA rearrangements. Plant Physiol. 178:1436-1447.   DOI
21 Merchant, S. S., Prochnik, S. E., Vallon, O., Harris, E. H., Karpowicz, S. J., Witman, G. B., Terry, A., Salamov, A., Fritz-Laylin, L. K., Maréchal-Drouard, L., Marshall, W. F., Qu, L. -H., Nelson, D. R., Sanderfoot, A. A., Spalding, M. H., Kapitonov, V. V., Ren, Q., Ferris, P., Lindquist, E., Shapiro, H., Lucas, S. M., Grimwood, J., Schmutz, J., Cardol, P., Cerutti, H., Chanfreau, G., Chen, C. -L., Cognat, V., Croft, M. T., Dent, R., Dutcher, S., Fernandez, E., Fukuzawa, H., Gonzalez-Ballester, D., Gonzalez-Halphen, D., Hallmann, A., Hanikenne, M., Hippler, M., Inwood, W., Jabbari, K., Kalanon, M., Kuras, R., Lefebvre, P. A., Lemaire, S. D., Lobanov, A. V., Lohr, M., Manuell, A., Meier, I., Mets, L., Mittag, M., Mittelmeier, T., Moroney, J. V., Moseley, J., Napoli, C., Nedelcu, A. M., Niyogi, K., Novoselov, S. V., Paulsen, I. T., Pazour, G., Purton, S., Ral, J. P., Riano-Pachón, D. M., Riekhof, W., Rymarquis, L., Schroda, M., Stern, D., Umen, J., Willows, R., Wilson, N., Zimmer, S. L., Allmer, J., Balk, J., Bisova, K., Chen, C. J., Elias, M., Gendler, K., Hauser, C., Lamb, M. R., Ledford, H., Long, J. C., Minagawa, J., Page, M. D., Pan, J., Pootakham, W., Roje, S., Rose, A., Stahlberg, E., Terauchi, A. M., Yang, P., Ball, S., Bowler, C., Dieckmann, C. L., Gladyshev, V. N., Green, P., Jorgensen, R., Mayfield, S., Mueller-Roeber, B., Rajamani, S., Sayre, R. T., Brokstein, P., Dubchak, I., Goodstein, D., Hornick, L., Huang, Y. W., Jhaveri, J., Luo, Y., Martínez, D., Ngau, W. C., Otillar, B., Poliakov, A., Porter, A., Szajkowski, L., Werner, G., Zhou, K., Grigoriev, I. V., Rokhsar, D. S. & Grossman, A. R. 2007. The Chlamydomonas genome reveals the evolution of key animal and plant functions. Science 318:245-250.   DOI
22 Lin, H. & Goodenough, U. W. 2007. Gametogenesis in the Chlamydomonas reinhardtii minus mating type is controlled by two genes, MID and MTD1. Genetics 176:913-925.   DOI
23 Matagne, R. F., Deltour, R. & Ledoux, L. 1979. Somatic fusion between cell wall mutants of Chlamydomonas reinhardi. Nature 278:344-346.   DOI
24 Matsunaga, S., Katagiri, Y., Nagashima, Y., Sugiyama, T., Hasegawa, J., Hayashi, K. & Sakamoto, T. 2013. New insights into the dynamics of plant cell nuclei and chromosomes. Int. Rev. Cell Mol. Biol. 305:253-301.   DOI
25 Molnar, M. & Sipiczki, M. 1993. Polyploidy in the haplontic yeast Schizosaccharomyces pombe: construction and analysis of strains. Curr. Genet. 24:45-52.   DOI
26 Shin, S. -E., Lim, J. -M., Koh, H. G., Kim, E. K., Kang, N. K., Jeon, S., Kwon, S., Shin, W. -S., Lee, B., Hwangbo, K., Kim, J., Ye, S. H., Yun, J. -Y., Seo, H., Oh, H. -M., Kim, K. -J., Kim, J. -S., Jeong, W. -J., Chang, Y. K. & Jeong, B. -R. 2016. CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci. Rep. 6:27810.   DOI
27 Palombella, A. L. & Dutcher, S. K. 1998. Identification of the gene encoding the tryptophan synthase ${\beta}$-subunit from Chlamydomonas reinhardtii. Plant Physiol. 117:455-464.   DOI
28 Pan, X., Yuan, D. S., Xiang, D., Wang, X., Sookhai-Mahadeo, S., Bader, J. S., Hieter, P., Spencer, F. & Boeke, J. D. 2004. A robust toolkit for functional profiling of the yeast genome. Mol. Cell 16:487-496.   DOI
29 Romero-Campero, F. J., Perez-Hurtado, I., Lucas-Reina, E., Romero, J. M. & Valverde, F. 2016. ChlamyNET: a Chlamydomonas gene co-expression network reveals global properties of the transcriptome and the early setup of key co-expression patterns in the green lineage. BMC Genomics 17:227.   DOI
30 VanWinkle-Swift, K. P. & Bauer, J. C. 1982. Self-sterile and maturation-defective mutants of the homothallic alga, Chlamydomonas monoica (Chlorophyceae). J. Phycol. 18:312-317.   DOI
31 Zhao, H., Lu, M., Singh, R. & Snell, W. J. 2001. Ectopic expression of a Chlamydomonas mt+-specific homeodomain protein in mt- gametes initiates zygote development without gamete fusion. Genes Dev. 15:2767-2777.   DOI
32 Blaby, I. K., Blaby-Haas, C. E., Tourasse, N., Hom, E. F., Lopez, D., Aksoy, M., Grossman, A., Umen, J., Dutcher, S., Porter, M., King, S., Witman, G. B., Stanke, M., Harris, E. H., Goodstein, D., Grimwood, J., Schmutz, J., Vallon, O., Merchant, S. S. & Prochnik, S. 2014. The Chlamydomonas genome project: a decade on. Trends Plant Sci. 19:672-680.   DOI
33 Baek, K., Kim, D. H., Jeong, J., Sim, S. J., Melis, A., Kim, J. -S., Jin, E. & Bae, S. 2016. DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci. Rep. 6:30620.   DOI
34 Bellafiore, S., Ferris, P., Naver, H., Gohre, V. & Rochaix, J. -D. 2002. Loss of Albino3 leads to the specific depletion of the light-harvesting system. Plant Cell 14:2303-2314.   DOI