Browse > Article
http://dx.doi.org/10.4490/algae.2018.33.2.25

Spatial and temporal dynamics of the abundance of crustose calcareous algae on the southernmost coral reefs of the western Atlantic (Abrolhos Bank, Brazil)  

Amado-Filho, Gilberto M. (Instituto de Pesquisas Jardim Botanico do Rio de Janeiro, Diretoria de Pesquisa Cientifica)
Bahia, Ricardo G. (Instituto de Pesquisas Jardim Botanico do Rio de Janeiro, Diretoria de Pesquisa Cientifica)
Mariath, Rodrigo (Instituto de Pesquisas Jardim Botanico do Rio de Janeiro, Diretoria de Pesquisa Cientifica)
Jesionek, Michel B. (Instituto de Pesquisas Jardim Botanico do Rio de Janeiro, Diretoria de Pesquisa Cientifica)
Moura, Rodrigo Leao (Instituto de Biologia, Universidade Federal do Rio de Janeiro)
Bastos, Alex C. (Departamento de Oceanografia, Universidade Federal do Espirito Santo)
Pereira-Filho, Guilherme Henrique (Instituto do Mar, Universidade Federal de Sao Paulo, Campus Baixada Santista)
Francini-Filho, Ronaldo Bastos (Centro de Ciencias Aplicadas e Educacao, Universidade Federal da Paraiba, Campus IV-Litoral Norte)
Publication Information
ALGAE / v.33, no.1, 2018 , pp. 85-99 More about this Journal
Abstract
Crustose calcareous algae (CCA) constitute one of the main reef builders on the Abrolhos Bank, Brazil. Once CCA taxonomy is locally understood, differences in growth-forms may be useful for the delimitation of taxa using characteristics such as the presence or absence of surface protuberances. Here, growth-forms were used to identify and quantify the most common CCA taxa on the shallow reefs (3-10 m) of the Abrolhos Bank to determine possible changes in the CCA community over a period of 10 years, and the ecological significance of CCA to local reefs was interpreted. The CCA assemblages were surveyed from 2006-2015 by using fixed photoquadrats at four sites in the inner (10-20 km from the mainland) and mid-shelf reefs (40-75 km from the mainland). The five most common CCA taxa were Pneophyllum conicum, the Lithophyllum kaiserii / Lithophyllum sp. complex, Melyvonnea erubescens, the Hydrolithon boergesenii / Porolithon onkodes complex and Peyssonelia sp. The overall mean CCA cover on the reefs was 20%. A comparison with a previous monitoring study in the same region indicated that the CCA cover nearly doubled from 2003-2008 to 2006-2015. This study reveals that the coral-killing species P. conicum dominated CCA flora on the shallow Abrolhos reefs in the last decade, and the local specific abundance of CCA slightly fluctuated over time and was species- and site-specific. The information obtained in this study contributes to the understanding of the ecology of the key calcifying components of the Abrolhos reefs and provides a useful baseline for exploring the responses of CCA to future environmental changes.
Keywords
Brazil; coral reef; ecology; macroalgae; reef community; South Atlantic;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Horta, P. A., Scherner, F., Bouzon, Z. L., Riosmena-Rodrígues, R. & Oliveira, E. C. 2011. Morphology and reproduction of Mesophyllum erubescens (Foslie) Me. Lemoine (Corallinales, Rhodophyta) from Southern Brazil. Rev. Bras. Bot. 34:125-134.   DOI
2 Jesionek, M. B., Bahia, R. G., Hernández-Kantún, J., Adey, W. H., Yoneshigue-Valentin, Y., Longo, L. L. & Amado-Filho, G. M. 2016. A taxonomic account of non-geniculate coralline algae (Corallinophycidae, Rhodophyta) from shallow reefs of the Abrolhos Bank, Brazil. Algae 31:317-340.   DOI
3 Leao, Z. M. A. N. & Dominguez, J. M. L. 2000. Tropical coast of Brazil. Mar. Pollut. Bull. 41:112-122.   DOI
4 Adey, W. H. 1975. The algal ridges and coral reefs of St. Croix: their structure and Holocene development. Atoll. Res. Bull. 187:1-67.   DOI
5 Abbott, I. A., Riosmena-Rodriguez, R., Kato, A., Squair, C. A., Michael, T. S. & Smith, C. M. 2012. Hawaiian crustose coralline algae: a survey of common species. Hawaii Botanical Science Paper No. 47. University of Hawaii at Manoa, Honolulu, HI, 58 pp.
6 Moura, R. L., Secchin, N. A., Amado-Filho, G. M., Francini-Filho, R. B., Freitas, M. O., Minte-Vera, C. V., Teixeira, J. B., Thompson, F. L., Dutra, G. F., Sumida, P. Y. G., Guth, A. Z., Lopes, R. M. & Bastos, A. C. 2013. Spatial patterns of benthic megahabitats and conservation planning in the Abrolhos Bank. Cont. Shelf Res. 70:109-117.   DOI
7 Nelson, W. A. 2009. Calcified macroalgae: critical to coastal ecosystems and vulnerable to change: a review. Mar. Freshw. Res. 60:787-801.   DOI
8 Adey, W. H. 1998. Coral reefs: algal structured and mediated ecosystems in shallow, turbuleny, alkaline waters. J. Phycol. 34:393-406.   DOI
9 Adey, W. H., Townsend, R. A. & Boykins, W. T. 1982. The crustose coralline algae (Rhodophyta: Corallinacea) of the Hawaiian Islands. Smithson. Contrib. Mar. Sci. 15:1-74.
10 Adey, W. H. & Vassar, J. M. 1975. Colonization, succession and growth rates of tropical coralline algae (Rhodophyta, Cryptonemiales). Phycologia 14:55-69.   DOI
11 Nunes, J. M. C., Guimarães, S. M. P. B., Donnangelo, A., Farias, J. & Horta, P. A. 2008. Taxonomic aspects of three species of non-geniculate coralline algae from Bahia State, Brazil. Rodriguesia 59:75-86.   DOI
12 Penrose, D. 1992. Neogoniolithon fosliei (Corallinaceae, Rhodophyta), the type species of Neogoniolithon, in southern Australia. Phycologia 31:338-350.   DOI
13 Perry, C. T., Spencer, T. & Kench, P. S. 2008. Carbonate budgets and reef production states: a geomorphic perspective on the ecological phase-shift concept. Coral Reefs 27:853-866.   DOI
14 Pueschel, C. M. & Saunders, G. W. 2009. Ramicrusta textilis sp. nov. (Peyssonneliaceae, Rhodophyta), an anatomically complex Caribbean alga that overgrows corals. Phycologia 48:480-491.   DOI
15 Quinn, J. F. 1982. Competitive hierarchies in marine benthic communities. Oecologia 54:129-135.   DOI
16 Bahia, R. G. 2014. Algas coralinaceas formadoras de rodolitos da plataforma continental tropical e ilhas oceanicas do Brasil: levantamento florístico e taxonomia. Ph.D. dissertation, Escola Nacional de Botanica Tropical, Rio de Janeiro, 221 pp.
17 Amado-Filho, G. M., Moura, R. L., Bastos, A. C., Salgado, L. T., Sumida, P. Y., Guth, A. Z., Francini-Filho, R. B., Pereira-Filho, G. H., Abrantes, D. P., Brasileriro, P. S., Bahia, R. G., Leal, R. N., Kaufman, L., Kleypas, J. A., Farina, M. & Thompson, F. L. 2012. Rhodolith beds are major $CaCO_3$ bio-factories in the Tropical South West Atlantic. PLoS ONE 7:e35171.   DOI
18 Antonius, A. 2001. Pneophyllum conicum, a coralline red alga causing coral reef-death in Mauritius. Coral Reefs 19:418.   DOI
19 Babcock, R. & Mundy, C. 1996. Coral recruitment: consequences of settlement choice for early growth and survivorship in two scleractinians. J. Exp. Mar. Biol. Ecol. 206:179-201.   DOI
20 Bahia, R. G., Amado-Filho, G. M., Maneveldt, G. W., Adey, W. H., Johnson, G., Marins, B. V. & Longo, L. L. 2014. Sporolithon tenue sp. nov. (Sporolithales, Corallinophycidae, Rhodophyta): a new rhodolith-forming species from the tropical southwestern Atlantic. Phycol. Res. 62:44-54.   DOI
21 Ballantine, D. L. & Ruiz, H. 2011. Metapeyssonnelia milleporoides, a new species of coral-killing red alga (Peyssonneliaceae) from Puerto Rico, Caribbean Sea. Bot. Mar. 54:47-51.
22 Steneck, R. S. 1986. The ecology of coralline algal crusts: convergent patterns and adaptive strategies. Annu. Rev. Ecol. Evol. Syst. 17:273-303.   DOI
23 Reis, V. M., Karez, C. S., Mariath, R., de Moraes, F. C., de Carvalho, R. T., Brasileiro, P. S., da Gama Bahia, R., de Cruz Lotufo, T. M., Ramalho, L. V., Moura, R. L., Francini-Filho, R. B., Pereira-Filho, G. H., Thompson, F. L., Bastos, A. C., Salgado, L. T. & Amado-Filho, G. M. 2016. Carbonate production by benthic communities on shallow coralgal reefs of Abrolhos Bank, Brazil. PLoS ONE 11:e0154417.   DOI
24 Riosmena-Rodriguez, R., Woelkerling, W. J. & Foster, M. S. 1999. Taxonomic reassessment of rhodolith-forming species of Lithophyllum (Corallinales, Rhodophyta) in the Gulf of California, Mexico. Phycologia 38:401-417.   DOI
25 Rosler, A., Perfectti, F., Pena, V. & Braga, J. C. 2016. Phylogenetic relationships of corallinaceae (Corallinales, Rhodophyta): taxonomic implications for reef-building corallines. J. Phycol. 52:412-431.   DOI
26 Bastos, A. C., Quaresma, V. S., Marangoni, M. B., D'Agostini, D. P., Bourguignon, S. N., Cetto, P. H., Silva, A. E., Amado-Filho, G. M., Moura, R. L. & Collins, M. 2015. Shelf morphology as an indicator of sedimentary regimes: a synthesis from a mixed siliciclastic-carbonate shelf on the eastern Brazilian margin. J. S. Am. Earth Sci. 63:125-136.   DOI
27 Silbiger, N. J., Guadayol, O., Thomas, F. I. M. & Donahue, M. J. 2014. Reefs shift from net accretion to net erosion along a natural environmental gradient. Mar. Ecol. Prog. Ser. 515:33-44.   DOI
28 Sissini, M. N., Oliveira, M. C., Gabrielson, P. W., Robinson, N. M., Okolodkov, Y. B., Riosmena-Rodríguez, R. & Horta, P. A. 2014. Mesophyllum erubescens (Corallinales, Rhodophyta): so many species in one epithet. Phytotaxa 190:299-319.   DOI
29 Steneck, R. S. 1985. Adaptations of crustose coralline algae to herbivory: patterns in space and time. In Toomy, D. F. & Nitecki, M. H. (Eds.) Paleoalgology. Springer-Verlag, Berlin, pp. 352-366.
30 Steneck, R. S. & Adey, W. H. 1976. The role of environment in control of morphology in Lithophyllum congestum, a Caribbean algal ridge builder. Bot. Mar. 19:197-216.
31 Bruce, T., Meirelles, P. M., Garcia, G., Paranhos, R., Rezende, C. E., Moura, R. L., Filho, R. F., Coni, E. O. C., Vasconcelos, A. T., Amado-Filho, G., Hatay, M., Schmieder, R., Edwards, R., Dinsdale, E. & Thompson, F. L. 2012. Abrolhos Bank reef health evaluated by means of water quality, microbial diversity, benthic cover, and fish biomass data. PLoS ONE 7:e36687.   DOI
32 Benzoni, F., Basso, D., Caragnano, A. & Rodondi, G. 2011. Hydrolithon spp. (Rhodophyta, Corallinales) overgrow live corals (Cnidaria, Scleractinia) in Yemen. Mar. Biol. 158:2419-2428.   DOI
33 Bittner, L., Payri, C. E., Maneveldt, G. W., Couloux, A., Cruaud, C., de Reviers, B. & Le Gall, L. 2011. Evolutionary history of the Corallinales (Corallinophycidae, Rhodophyta) inferred from nuclear, plastidial and mitochondrial genomes. Mol. Phylogenet. Evol. 61:697-713.   DOI
34 Broom, J. E. S., Hart, D. R., Farr, T. J., Nelson, W. A., Neill, K. F., Harvey, A. S. & Woelkerling, W. J. 2008. Utility of psbA and nSSU for phylogenetic reconstruction in the Corallinales based on New Zealand taxa. Mol. Phylogenet. Evol. 46:958-973.   DOI
35 Carro, B., Lopez, L., Pena, V., Barbara, I. & Barreiro, R. 2014. DNA barcoding allows the accurate assessment of European maerl diversity: a Proof-of-Concept study. Phytotaxa 190:176-189.   DOI
36 Dean, A. J., Steneck, R. S., Tager, D. & Pandolfi, J. M. 2015. Distribution, abundance and diversity of crustose coralline algae on the Great Barrier Reef. Coral Reefs 34:581-594.   DOI
37 Segal, B. & Castro, C. B. 2011. Coral community structure and sedimentation at different distances from the coast of the Abrolhos Bank, Brazil. Braz. J. Oceanogr. 59:119-129.
38 Sweatman, H., Delean, S. & Syms, C. 2011. Assessing loss of coral cover on Australia's Great Barrier Reef over two decades, with implications for longer-term trends. Coral Reefs 30:521-531.   DOI
39 Tamega, F. T. S. & Figueiredo, M. A. O. 2007. Distribution of crustose coralline algae (Corallinales, Rhodophyta) in the Abrolhos reefs, Bahia, Brazil. Rodriguesia 58:941-947.   DOI
40 Tamega, F. T. S., Riosmena-Rodriguez, R., Mariath, R. & Figueiredo, M. A. O. 2014. Nongeniculate coralline red algae (Rhodophyta: Corallinales) in coral reefs from Northeastern Brazil and a description of Neogoniolithon atlanticum sp. nov. Phytotaxa 190:277-298.   DOI
41 Figueiredo, M. A. O. 2006. Diversity of macrophytes in the Abrolhos Bank, Brazil. In Dutra, G. F., Allen, G. R., Werner, T. & McKenna, S. A. (Eds.) A Rapid Marine Biodiversity Assessment of the Abrolhos Bank, Bahia, Brazil. RAP Bulletin of Biological Assessment, Vol. 38. Conservation International, Arlington, VA, pp. 67-74.
42 Diaz-Perez, L., Rodriguez-Zaragoza, F. A., Ortiz, M., Cupul-Magana, A. L., Carriquiry, J. D., Ríos-Jara, E., Rodriguez-Troncoso, A. P. & Garcia-Rivas, M. C. 2016. Coral reef health indices versus the biological, ecological and functional diversity of fish and coral assemblages in the Caribbean Sea. PLoS ONE 11:e0167252.   DOI
43 Dutra, L. X. C., Kikuchi, R. K. P. & Leao, Z. M. A. N. 2006. Effects of sediment accumulation on reef corals fromAbrolhos, Bahia, Brazil. J. Coast. Res. 39:633-638.
44 Eckrich, C. E., Engel, M. S. & Peachey, R. B. J. 2011. Crustose, calcareous algal bloom (Ramicrusta sp.) overgrowing scleractinian corals, gorgonians, a hydrocoral, sponges, and other algae in Lac Bay, Bonaire, Dutch Caribbean. Coral Reefs 30:131.   DOI
45 Fabricius, K. & De'ath, G. 2001. Environmental factors associated with the spatial distribution of crustose coralline algae on the Great Barrier Reef. Coral Reefs 19:303-309.   DOI
46 Figueiredo, M. A. O. 1997. Colonization and growth of crustose coralline algae in Abrolhos, Brazil. In Lessios, H. A. & Macintyre, I. G. (Eds.) Proceedings of the 8th International Coral Reef Symposium, Smithsonian Tropical Research Institute, Panama, pp. 689-694.
47 Figueiredo, M. A. O. & Steneck, R. S. 2002. Floristic and ecological studies of crustose coralline algae on Brazil's Abrolhos reefs. In Kasim, M. (Ed.) Proceedings of the 9th International Coral Reef Symposium, Ministry of Environment, Indonesian Institute of Sciences, International Society for Reef Studies, Bali, pp. 493-498.
48 Foslie, M. 1900. New or critical calcareous algae. Kongel. Norske. Vidensk. Selsk. Skr. 5:1-34.
49 Verheij, E. 1993. The genus Sporolithon (Sporolithaceae fam. nov., Corallinales, Rhodophyta) from the Spermonde Archipelago, Indonesia. Phycologia 32:184-196.   DOI
50 Tamega, F. T. S., Riosmena-Rodriguez, R., Spotorno-Oliveira, P., Mariath, R., Khader, S. & Figueiredo, M. A. O. 2015. Taxonomy and distribution of non-geniculate coralline red algae (Corallinales, Rhodophyta) on rocky reefs from Ilha Grande Bay, Brazil. Phytotaxa 192:267-278.   DOI
51 Villaca, R. C. & Pitombo, F. B. 1997. Benthic communities of shallow-water reefs of Abrolhos, Brazil. Rev. Bras.Oceanogr. 45:35-43.   DOI
52 Villas-Boas, A. B., Figueiredo, M. A. O. & Villaça, R. C. 2005. Colonization and growth of crustose coralline algae (Corallinales, Rhodophyta) on the Rocas Atoll. Braz. J. Oceanogr. 53:147-156.   DOI
53 Francini-Filho, R. B. & Moura, R. L. 2008. Dynamics of fish assemblages on coral reefs subjected to different management regimes in the Abrolhos Bank, eastern Brazil. Aquat. Conserv. Mar. Freshw. Ecosyst. 18:1166-1179.   DOI
54 Vroom, P. S., Page, K. N., Kenyon, J. C. & Brainard, R. E. 2006. Algae-dominated reefs: numerous reports suggest that reefs must be dominated by coral to be healthy, but many thriving reefs depent more on algae. Am. Sci. 94:430-437.   DOI
55 Woelkerling, W. J. 1988. The coralline red algae: an analysis of the genera and subfamilies of nongeniculate Corallinaceae. Oxford University Press, London & Oxford, 268 pp.
56 Woelkerling, W. J., Irvine, L. M. & Harvey, A. S. 1993. Growthforms in non-geniculate coralline red algae (Corallinales, Rhodophyta). Aust. Syst. Bot. 6:277-293.   DOI
57 Foster, M. S. 1975. Algal succession in a Macrocystis pyrifera forest. Mar. Biol. 32:313-329.   DOI
58 Francini-Filho, R. B., Coni, E. C. O., Meirelles, P. M., Amado-Filho, G. M., Thompson, F. L., Pereira-Filho, G. H., Bastos, A. C., Abrantes, D. P., Ferreira, C. M., Gibran, F. Z., Güth, A. Z., Sumida, P. Y. G., Oliveira, N. L., Kaufman, L., Minte-Vera, C. V. & Moura, R. L. 2013. Dynamics of coral reef benthic assemblages of the Abrolhos Bank, Eastern Brazil: inferences on natural and anthropogenic drivers. PLoS ONE 8:e54260.   DOI
59 Harrington, L., Fabricius, K., De'ath, G. & Negri, A. 2004. Recognition and selection of settlement substrata determine post-settlement survival in corals. Ecology 85:3428-3437.   DOI
60 Harvey, As., Woelkerling, W. J., Farr, T., Neill, K. & Nelson, W. A. 2005. Coralline algae of central New Zealand: an identification guide to common 'crustose' species. NIWA Information Series No. 57. National Institute of Water and Atmospheric Research, Wellington, 145 pp.
61 Hernandez-Kantun, J. J., Gabrielson, P., Hughey, J. R., Pezzolesi, L., Rindi, F., Robinson, N. M., Pena, V., Riosmena-Rodríguez, R., Le Gall, L. & Adey, W. 2016. Reassessment of branched Lithophyllum spp. (Corallinales, Rhodophyta) in the Caribbean Sea with global implications. Phycologia 55:619-639.   DOI
62 Kato, A., Baba, M. & Suda, S. 2013. Taxonomic circumscription of heterogeneous species Neogoniolithon brassicaflorida (Corallinales, Rhodophyta) in Japan. Phycol. Res. 61:15-26.   DOI
63 Kohler, K. E. & Gill, S. M. 2006. Coral Point Count with Excel extensions (CPCe): a Visual Basic program for the determination of coral and substrate coverage using random point count methodology. Comput. Geosci. 32:1259-1269.   DOI
64 Keats, D. W., Chamberlain, Y. M. & Baba, M. 1997. Pneophyllum conicum (Dawson) comb. nov. (Rhodophyta, Corallinaceae), a widespread Indo-Pacific non-geniculate coralline alga that overgrows and kills live coral. Bot.Mar. 40:263-279.
65 Leao, Z. M. A. N. & Kikuchi, R. K. P. 2001. The Abrolhos reefs of Brazil. In Seeliger, U. & Kjerfve, B. (Eds.) Coastal Marine Ecosystems of Latin America. Ecological Studies (Analysis and Synthesis). Vol. 144. Springer-Verlag, Berlin, pp. 83-96.
66 Leao, Z. M. A. N. & Kikuchi, R. K. P. 2005. A relic coral fauna threatened by global changes and human activities Eastern Brazil. Mar. Pollut. Bull. 51:599-611.   DOI
67 Kendrick, G. A. 1991. Recruitment of coralline crusts and filamentous turf algae in the Galapagos archipelago: effect of simulated scour, erosion and accretion. J. Exp. Mar. Biol. Ecol. 147:47-63.   DOI
68 Kikuchi, R. K. P., Leao, Z. M. A. N., Testa, V., Dutra, L. X. C. & Spano, S. 2003. Rapid assessment of the Abrolhos Reefs, Eastern Brazil (Part 1: stony corals and algae). Atoll Res. Bull. 496:172-187.   DOI
69 Johansen, H. W. 1981. Coralline algae: a first synthesis. CRC Press, Boca Raton, FL, 239 pp.
70 Leao, Z. M. A. N., Kikuchi, R. K. P. & Testa, V. 2003. Corals and coral reefs of Brazil. In Cortes, J. (Ed.) Latin America Coral Reefs. Elsevier Publisher, Amsterdam, pp. 9-52.
71 Littler, D. S. & Littler, M. M. 2000. Caribbean reef plants: an identification guide to the reef plants of the Caribbean, Bahamas, Florida and Gulf of Mexico. OffShore Graphics Inc., Washington, DC, 542 pp.
72 Maneveldt, G. W. 2005. A global revision of the nongeniculate coralline algal genera Porolithon Foslie (defunct) and Hydrolithon Foslie (Corallinales, Rhodophyta). Ph.D. dissertation, University of the Western Cape, CapeTown, 690 pp.
73 Maneveldt, G. W. & Keats, D. W. 2014. Taxonomic review based on new data of the reef-building alga Porolithon onkodes (Corallinaceae, Corallinales, Rhodophyta) along with other taxa found to be conspecific. Phytotaxa 190:216-249.   DOI
74 Mariath, R., Riosmena-Rodriguez, R. & Figueiredo, M. 2012. Lithothamnion steneckii sp. nov. and Pneophyllum conicum: new coralline red algae (Corallinales, Rhodophyta) for coral reefs of Brazil. Algae 4:249-258.
75 Mariath, R., Riosmena-Rodriguez, R. & Figueiredo, M. A. O. 2013. Succession of crustose coralline red algae (Rhodophyta) on coralgal reefs exposed to physical disturbance in the southwest Atlantic. Helgol. Mar. Res.67:687-696.   DOI
76 Matsuda, S. 1989. Succession and growth rates of encrusting crustose coralline algae (Rhodophyta, Cryptonemiales) in the upper fore-reef environment off Ishigaki Island, Ryukyu Islands. Coral Reefs 7:185-195.   DOI