Browse > Article
http://dx.doi.org/10.4490/algae.2016.31.12.9

Growth responses of Chondrus ocellatus Holmes (Gigartinales, Rhodophyta) to two endophytes, Mikrosyphar zosterae Kuckuck (Ectocarpales, Ochrophyta) and Ulvella ramosa (N. L. Gardner) R. Nielsen (Ulvales, Chlorophyta) in culture  

Ogandaga, Cyr Abel Maranguy (Faculty of Biological Science and Institute for Environmental Science, Wonkwang University)
Choi, Han Gil (Faculty of Biological Science and Institute for Environmental Science, Wonkwang University)
Kim, Jang Kyun (Department of Marine Science, Incheon National University)
Nam, Ki Wan (Department of Marine Biology, Pukyong National University)
Publication Information
ALGAE / v.31, no.4, 2016 , pp. 363-371 More about this Journal
Abstract
To examine the effects of two endophytic algae, Mikrosyphar zosterae (brown alga) and Ulvella ramosa (green alga), on the host Chondrus ocellatus (red alga), culture experiments were conducted. Four treatments were made: endophyte-free (Chondrus only), endophyte-M (Chondrus + Mikrosyphar), endophyte-U (Chondrus + Ulvella), and endophytes-M U (Chondrus + Mikrosyphar + Ulvella). After 3 weeks, the relative growth rates (RGRs) of frond lengths and the number of newly formed bladelets were examined. M. zosterae formed wart-like dots on C. ocellatus fronds, whereas U. ramosa made dark spots. The RGRs of frond lengths of C. ocellatus were significantly greater in the endophyte-free and endophyte-M treatment groups than in the endophyte-U and endophytes-M U treatment groups, indicating that the growth of host C. ocellatus was inhibited more by the green endophyte U. ramosa than the brown endophyte M. zosterae. The number of newly produced bladelets was greater in the endophyte-U and endophytes-M U groups than in the endophyte-free and endophyte-M treatment groups. These results indicate that the two endophytes inhibit growth of the host C. ocellatus. The negative effects of U. ramosa on C. ocellatus growth were more severe than those caused by M. zosterae. Furthermore, U. ramosa destroyed the apical meristems of C. ocellatus, whereas M. zosterae did not. On the other hand, C. ocellatus showed compensatory growth in the form of lateral branch production as U. ramosa attacked its apical meristems.
Keywords
Chondrus ocellatus; growth; infection; Mikrosyphar zosterae; Ulvella ramosa;
Citations & Related Records
Times Cited By KSCI : 7  (Citation Analysis)
연도 인용수 순위
1 Brodie, J., Guiry, M. D. & Masuda, M. 1991. Life history and morphology of Chondrus nipponicus (Gigartinales, Rhodophyta) from Japan. Br. Phycol. J. 26:33-50.   DOI
2 Brodie, J., Guiry, M. D. & Masuda, M. 1993. Life history, morphology and crossability of Chondrus ocellatus forma ocellatus and C. ocellatus forma crispoides (Gigartinales, Rhodophyta) from the north-western Pacific. Eur. J. Phycol. 28:183-196.   DOI
3 Choi, H. G., Kim, B. Y., Park, S. K., Heo, J. S., Kim, C., Kim, Y. S. & Nam, K. W. 2015a. Effects of wave action and grazers on frond perforation of the green alga, Ulva australis. Algae 30:59-66.   DOI
4 Choi, H. G., Kim, C., Kim, Y. S., Lee, S, J., Park, M. A. & Nam, K. W. 2015b. Phenology of host Chondrus ocellatus with filamentous green endophyte infection. Ocean Sci. J. 50:519-527.   DOI
5 Chopin, T. & Floc'h, J.-Y. 1992. Eco-physiological and biochemical study of two of the most contrasting forms of Chondrus crispus (Rhodophyta, Gigartinales). Mar. Ecol. Prog. Ser. 81:185-195.   DOI
6 Corey, P., Kim, J. K., Garbary, D. J., Prithiviraj, B. & Duston, J. 2012. Bioremediation potential of Chondrus crispus (Basin Head) and Palmaria palmata: effect of temperature and high nitrate on nutrient removal. J. Appl. Phycol. 24:441-448.   DOI
7 Correa, J. A., Buschmann, A., Retamales, C. & Beltran, J. 1997. Infectious diseases of Mazzaella laminarioides (Rhodophyta): changes in infection prevalence and disease expression associated with season, locality, and withinsite location. J. Phycol. 33:344-352.   DOI
8 Correa, J. A., Flores, V. & Garrido, J. 1994. Green patch disease in Iridaea laminarioides (Rhodophyta) caused by Endophyton sp. (Chlorophyta). Dis. Aquat. Org. 19:203-213.   DOI
9 Preuss, M. & Zuccarello, G. C. 2014. What's in a name? Monophyly of genera in the red algae: Rhodophyllis parasitica sp. nov. (Gigartinales, Rhodophyta); a new red algal parasite from New Zealand. Algae 29:279-288.   DOI
10 Potin, P. 2012. Intimate Associations between epiphytes, endophytes, and parasites of seaweeds. In Wiencke, C. & Bischof, K. (Eds.) Seaweed Biology: Novel Insights into Ecophysiology, Ecology and Utilization. Springer, NY, pp. 203-234.
11 Provasoli, L. 1968. Media and prospects for the cultivation of marine algae. In Watanabe, A. & Hattori, A. (Eds.) Cultures and Collections of Algae. Proc. U. S. Jpn. Conf. 1966, Japanese Society for Plant Physiology, Hakone, pp. 63-75.
12 Yoshida, T. & Akiyama, K. 1979. Streblonema (Phaeophyceae) infection in the frond of cultivated Undaria (Phaeophyceae). In Proc. 9th Int. Seaweed Symp., Science Press, Santa Barbara, CA, pp. 219-223.
13 Sanchez, P. C., Correa, J. A. & Garcia-Reina, G. 1996. Hostspecificity of Endophyton ramosum (Chlorophyta), the causative agent of green patch disease in Mazzaella laminarioides (Rhodophyta). Eur. J. Phycol. 31:173-179.   DOI
14 Schoenrock, K. M., Amsler, C. D., McClintock, J. B. & Baker, B. J. 2013. Endophyte presence as a potential stressor on growth and survival in Antarctic macroalgal hosts. Phycologia 52:595-599.   DOI
15 Sokal, R. R. & Rohlf, F. J. 1995. Biometry: the principles and practices of statistics in biological research. 3rd ed. W. H. Freeman, NY, 887 pp.
16 Wang, A., Wang, J. & Duan, D. 2006. Early development of Chondrus ocellatus Holm (Gigartinaceae, Rhodophyta). Chin. J. Oceanol. Limnol. 24:129-133.   DOI
17 Weinberger, F. 2007. Pathogen-induced defense and innate immunity in macroalgae. Biol. Bull. 213:290-302.   DOI
18 Necas, J. & Bartosikova, L. 2013. Carrageenan: a review. Vet. Med. Czech. 58:187-205.   DOI
19 Correa, J. A. & McLachlan, J. L. 1991. Endophytic algae of Chondrus crispus (Rhodophyta). III. Host-specificity. J. Phycol. 27:448-459.   DOI
20 Correa, J. A., Flores, V. & Sanchez, P. 1993. Deformative disease in Iridaea laminarioides (Rhodophyta): gall development associated with an endophytic cyanobacterium. J. Phycol. 29:853-860.   DOI
21 Correa, J. A. & McLachlan, J. L. 1992. Endophytic algae of Chondrus crispus (Rhodophyta). IV. Effects on the host following infections by Acrochaete operculata and A. heteroclada (Chlorophyta). Mar. Ecol. Prog. Ser. 81:73-87.   DOI
22 Correa, J. A. & McLachlan, J. L. 1994. Endophytic algae of Chondrus crispus (Rhodophyta). V. Fine structure of the infection by Acrochaete operculata (Chlorophyta). Eur. J. Phycol. 29:33-47.   DOI
23 Correa, J. A., Nielsen, R. & Grund, D. W. 1988. Endophytic algae of Chondrus crispus (Rhodophyta) II. Acrochaete heteroclada sp. nov., A. operculata sp. nov., and Phaeophila dendroides (Chlorophyta). J. Phycol. 24:528-539.
24 Faugeron, S., Martinez, E. A., Sanchez, P. A. & Correa, J. A. 2000. Infectious diseases in Mazzaella laminarioides (Rhodophyta): estimating the effect of infections on host reproductive potential. Dis. Aquat. Org. 42:143-148.   DOI
25 Fernandes, D. R. P., Yokoya, N. S. & Yoneshigue-Valentin, Y. 2011. Protocol for seaweed decontamination to isolate unialgal cultures. Rev. Bras. Farmacogn. 21:313-316.   DOI
26 Gauna, M. C., Parodi, E. R. & Caceres, E. J. 2009. Epi-endophytic symbiosis between Laminariocolax aecidioides (Ectocarpales, Phaeophyceae) and Undaria pinnatifida (Laminariales, Phaeophyceae) growing on Argentinian coasts. J. Appl. Phycol. 21:11-18.   DOI
27 Gachon, C. M. M., Sime-Ngando, T., Strittmatter, M., Chambouvet, A. & Kim, G. H. 2010. Algal diseases: spotlight on a black box. Trends Plant Sci. 15:633-640.   DOI
28 Garbary, D. J., Miller, A. G. & Scrosati, R. A. 2014. Ascophyllum nodosum and its symbionts: XI. The epiphyte Vertebrata lanosa performs better photosynthetically when attached to Ascophyllum than when alone. Algae 29:321-331.   DOI
29 West, J. A., Pueschel, C. M., Klochkova, T. A., Kim, G. H., de Goer, S. & Zuccarello, G. C. 2013. Gall structure and specificity in Bostrychia culture isolated (Rhodomelaceae, Rhodophyta). Algae 28:83-92.   DOI
30 Zhou, G., Ma, W. & Yuan, P. 2014. Chemical characterization and antioxidant activities of different sulfate content of $\lambda$-carrageenan fractions from edible red seaweed Chondrus ocellatus. Cell. Mol. Biol. 60:107.
31 Goecke, F., Wiese, J., Nunez, A., Labes, A., Imhoff, J. F. & Neuhauser, S. 2012. A novel phytomyxean parasite associated with galls on the bull-kelp Durvillaea antarctica (Chamisso) Hariot. PLoS One 7:e45358.   DOI
32 Honkanen, T. & Jormalainen, V. 2002. Within-alga integration and compensation: effects of simulated herbivory on growth and reproduction of the brown alga, Fucus vesiculosus. Int. J. Plant Sci. 163:815-823.   DOI
33 Iima, M. & Tatewaki, M. 1987. On the life history and host specificity of Blastophysa rhizopus (Codiales, Chaetosiphonaceae), an endophytic green alga from Mororan in laboratory cultures. Jpn. J. Phycol. 35:241-250.
34 Kim, C., Kim, Y. S., Choi, H. G. & Nam, K. W. 2014. New records of three endophytic green algae from Grateloupia spp. (Rhodophyta) in Korea. Algae 29:127-136.   DOI
35 Kim, Y. S., Choi, H. G. & Nam, K. W. 2006. Phenology of Chondrus ocellatus in Cheongsapo near Busan, Korea. J. Appl. Phycol. 18:551-556.   DOI
36 Li, X., Zhao, P., Wang, G., Li, D., Wang, J. & Duan, D. 2010. Effects of temperature and irradiance on early development of Chondrus ocellatus Holm (Gigartinaceae, Rhodophyta). Chin. J. Oceanol. Limnol. 28:508-513.   DOI
37 Apt, K. E. 1988. Galls and tumor-like growths on marine macroalgae. Dis. Aquat. Org. 4:211-217.   DOI
38 Apt, K. E. & Gibor, A. 1991. The ultrastructure of galls on the red alga Gracilaria epihippisora. J. Phycol. 27:409-413.   DOI
39 Bouarab, K., Potin, P., Weinberger, F., Correa, J. & Kloareg, B. 2001. The Chondrus crispus-Acrochaete operculata hostpathogen association, a novel model in glycobiology and applied phycopathology. J. Appl. Phycol. 13:185-193.   DOI
40 Lee, S. J., Park, M.-A., Ogandaga-Maranguy, C. A., Park, S. K., Kim, H., Kim, Y. S. & Choi, H. G. 2013. A study on the growth and disease of Chondrus ocellatus in Korea. J. Fish Pathol. 26:265-274.   DOI
41 Lindstrom, S. C. 2009. The biogeography of seaweeds in southeast Alaska. J. Biogeogr. 36:401-409.   DOI