Browse > Article
http://dx.doi.org/10.4490/algae.2016.31.6.29

Anti-inflammatory and anti-cancer activities of sterol rich fraction of cultured marine microalga Nannochloropsis oculata  

Sanjeewa, Kalu Kapuge Asanka (Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University)
Fernando, Ilekuttige Priyan Shanura (Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University)
Samarakoon, Kalpa W. (Industrial Technology Institute)
Lakmal, Hetti Handi Chaminda (Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University)
Kim, Eun-A (Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University)
Kwon, O-Nam (Marine Biology Center for Research and Education, Gangneung-Wonju National University)
Dilshara, Matharage Gayani (Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University)
Lee, Joon-Baek (Department of Earth and Marine Sciences, College of Ocean Sciences, Jeju National University)
Jeon, You-Jin (Department of Marine Life Science, School of Marine Biomedical Sciences, Jeju National University)
Publication Information
ALGAE / v.31, no.3, 2016 , pp. 277-287 More about this Journal
Abstract
Five fractions separated from Nannochloropsis oculata using solvent-solvent partition chromatography of 80% methanolic extract of N. oculata (NOM) followed by the open silica column chromatography of its hexane fraction (NOMH) for the anti-inflammatory on RAW 264.7 cells and anti-cancer activities on HL-60, A-549, HEP-3B, HCT-116, and SW-480 cancer cells. All the five fractions showed potential anti-inflammatory activities against lipopolysaccharide-stimulated RAW 264.7 macrophages cells with IC50 values less than 6.25 μg mL−1. Moreover, 90% n-hexane column elution of NOMH (NOMH90) down-regulated lipopolysaccharide-stimulated protein levels of inducible nitric oxide synthase and cyclooxygenase-2. Furthermore, NOMH90 showed marked cytotoxic effect on the HL-60 cells with IC50 value of 23.58 ± 0.09 μg mL−1. In addition, Hoechst 33342 cell permeable dye used to visualize the apoptosis nucleus and cell cycle analysis measured Sub-G1 DNA contents to confirm reduction of the cell viability in NOMH90 treated cells due to induction of apoptosis in HL60. These results are quite related to the phytosterol contents of the NOMH fractions and the results suggest N. oculata extracts might be useful as potential sources of natural anti-inflammatory and anti-cancer compounds. In conclusion, the sterol content in N. oculata might provide a promising role in future medicines in anti-inflammatory and anti-cancer.
Keywords
anti-cancer; anti-inflammation; hexane fraction; Nannochloropsis oculata; sterol;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Jacobson, M. D., Weil, M. & Raff, M. C. 1997. Programmed cell death in animal development. Cell 88:347-354.   DOI
2 Jayaprakasam, B., Zhang, Y., Seeram, N. P. & Nair, M. G. 2003. Growth inhibition of human tumor cell lines by withanolides from Withania somnifera leaves. Life Sci. 74:125-132.   DOI
3 Justo, G. Z., Silva, M. R. & Queiroz, M. L. S. 2001. Effects of the green algae Chlorella vulgaris on the response of the host hematopoietic system to intraperitoneal Ehrlich ascites tumor transplantation in mice. Immunopharmacol. Immunotoxicol. 23:119-132.   DOI
4 Kim, B. -C., Choi, J. -W., Hong, H. -Y., Lee, S. -A., Hong, S., Park, E. -H., Kim, S. -J. & Lim, C. -J. 2006. Heme oxygenase-1 mediates the anti-inflammatory effect of mushroom Phellinus linteus in LPS-stimulated RAW264.7 macrophages. J. Ethnopharmacol. 106:364-371.   DOI
5 Kim, J. H., Kim, S. M., Pan, C. -H., Choi, J. -K. & Lee, J. K. 2013. Evaluation of anti-inflammatory activities and mechanisms of microalga Phaeodactylum tricornutum. J. Appl. Biol. Chem. 56:61-67.   DOI
6 Kim, J. -H., Lee, G., Cho, Y. -L., Kim, C. -K., Han, S., Lee, H., Choi, J. S., Choe, J., Won, M. -H., Kwon, Y. -G., Ha, K. -S. & Kim, Y. -M. 2009. Desmethylanhydroicaritin inhibits NF-κB-regulated inflammatory gene expression by modulating the redox-sensitive PI3K/PTEN/Akt pathway. Eur. J. Pharmacol. 602:422-431.   DOI
7 Huang, T. C., Chen, C. P., Wefler, V. & Raftery, A. 1961. A stable reagent for the Liebermann-Burchard reaction: application to rapid serum cholesterol determination. Anal. Chem. 33:1405-1407.   DOI
8 Somchit, M. N., Mohamed, N. A., Ahmad, Z., Zakaria, Z. A., Shamsuddin, L., Omar Fauzee, M. S. & Kadir, A. A. 2014. Anti-inflammatory and anti-pyretic properties of Spirulina platensis and Spirulina lonar: a comparative study. Pak. J. Pharm. Sci 27:1277-1280.
9 Sukenik, A., Zmora, O. & Carmeli, Y. 1993. Biochemical quality of marine unicellular algae with special emphasis on lipid composition: II. Nannochloropsis sp. Aquaculture 117:313-326.   DOI
10 Umdu, E. S., Tuncer, M. & Seker, E. 2009. Transesterification of Nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresour. Technol. 100:2828-2831.   DOI
11 Van Vooren, G., Le Grand, F., Legrand, J., Cuiné, S., Peltier, G. & Pruvost, J. 2012. Investigation of fatty acids accumulation in Nannochloropsis oculata for biodiesel application. Bioresour. Technol. 124:421-432.   DOI
12 Vanden Berghe, T., Grootjans, S., Goossens, V., Dondelinger, Y., Krysko, D. V., Takahashi, N. & Vandenabeele, P. 2013. Determination of apoptotic and necrotic cell death in vitro and in vivo. Methods 61:117-129.   DOI
13 Volkman, J. K., Barrett, S. M., Blackburn, S. I., Mansour, M. P., Sikes, E. L. & Gelin, F. 1998. Microalgal biomarkers: a review of recent research developments. Org. Geochem. 29:1163-1179.   DOI
14 Walne, P. R. 1966. Experiments in the large-scale culture of the larvae of Ostrea edulis L. Fish. Invest. Ser. 2 25:1-55.
15 Costa, P. M., Cardoso, A. L., Mendonça, L. S., Serani, A., Custódia, C., Conceição, M., Simões, S., Moreira, J. N., Pereira de Almeida, L. & Pedroso de Lima, M. C. 2013. Tumor-targeted chlorotoxin-coupled nanoparticles for nucleic acid delivery to glioblastoma cells: a promising system for glioblastoma treatment. Mol. Ther. Nucleic Acids 2:e100.   DOI
16 Burke, R. W., Diamondstone, B. I., Velapoldi, R. A. & Menis, O. 1974. Mechanisms of the Liebermann-Burchard and Zak color reactions for cholesterol. Clin. Chem. 20:794-801.
17 Calder, P. C. 2006. n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am. J. Clin. Nutr. 83(6 Suppl):1505S-1519S.
18 Converti, A., Casazza, A. A., Ortiz, E. Y., Perego, P. & Del Borghi, M. 2009. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. 48:1146-1151.   DOI
19 Cotter, T. G. 2009. Apoptosis and cancer: the genesis of a research field. Nat. Rev. Cancer 9:501-507.   DOI
20 Coussens, L. M. & Werb, Z. 2002. Inflammation and cancer. Nature 420:860-867.   DOI
21 Lizard, G., Fournel, S., Genestier, L., Dhedin, N., Chaput, C., Flacher, M., Mutin, M., Panaye, G. & Revillard, J. -P. 1995. Kinetics of plasma membrane and mitochondrial alterations in cells undergoing apoptosis. Cytometry 21:275-283.   DOI
22 Kim, Y. -S., Li, X. -F., Kang, K. -H., Ryu, B. & Kim, S. K. 2014. Stigmasterol isolated from marine microalgae Navicula incerta induces apoptosis in human hepatoma HepG2 cells. BMB Rep. 47:433-438.   DOI
23 Yasukawa, K., Akihisa, T., Kanno, H., Kaminaga, T., Izumida, M., Sakoh, T., Tamura, T. & Takido, M. 1996. Inhibitory effects of sterols isolated from Chlorella vulgaris on 12-O-tetradecanoylphorbol-13-acetate-induced inflammation and tumor promotion in mouse skin. Biol. Pharm. Bull. 19:573-576.   DOI
24 Knöferl, M. W., Diodato, M. D., Schwacha, M. G., Cioffi, W. G., Bland, K. I. & Chaudry, I. H. 2001. Cyclooxygenase-2-mediated regulation of Kupffer cell interleukin-6 production following trauma-hemorrhage and subsequent sepsis. Shock 16:479-483.   DOI
25 Kobuchi, H., Droy-lefaix, M. T., Christen, Y. & Packer, L. 1997. Ginkgo biloba extract (egb 761): inhibitory effect on nitric oxide production in the macrophage cell line RAW 264.7. Biochem. Pharmacol. 53:897-903.   DOI
26 Lee, S. -J., Bai, S. -K., Lee, K. -S., Namkoong, S., Na, H. -J., Ha, K. -S., Han, J. -A., Yim, S. -V., Chang, K., Kwon, Y. -G., Lee, S. K. & Kim, Y. -M. 2003. Astaxanthin inhibits nitric oxide production and inflammatory gene expression by suppressing IκB kinase-dependent NF-κB activation. Mol. Cells 16:97-105.
27 Lee, S. K., Hong, C. -H., Huh, S. -K., Kim, S. -S., Oh, O. -J., Min, H. -Y., Park, K. -K., Chung, W. -Y. & Hwang, J. -K. 2002. Suppressive effect of natural sesquiterpenoids on inducible cyclooxygenase (COX-2) and nitric oxide synthase (iNOS) activity in mouse macrophage cells. J. Environ. Pathol. Toxicol. Oncol. 21:141-148.
28 Leiro, J., Álvarez, E., García, D. & Orallo, F. 2002. Resveratrol modulates rat macrophage functions. Int. Immuno-pharmacol. 2:767-774.   DOI
29 Fesik, S. W. 2005. Promoting apoptosis as a strategy for cancer drug discovery. Nat. Rev. Cancer 5:876-885.   DOI
30 Cunniff, P. A. 1998. Official methods of nalysis of AOAC International [CD-ROM]. Association of Official Analysis Chemists International, Gaithersburg, MD.
31 Francavilla, M., Colaianna, M., Zotti, M., Morgese, M. G., Trotta, P., Tucci, P., Schiavone, S., Cuomo, V. & Trabace, L. 2012. Extraction, characterization and in vivo neuro-modulatory activity of phytosterols from microalga Dunaliella tertiolecta. Curr. Med. Chem. 19:3058-3067.   DOI
32 Gordon, S. 2002. Pattern recognition receptors: doubling up for the innate immune response. Cell 111:927-930.   DOI
33 Greenhough, A., Smartt, H. J. M., Moore, A. E., Roberts, H. R., Williams, A. C., Paraskeva, C. & Kaidi, A. 2009. The COX-2/PGE2 pathway: key roles in the hallmarks of cancer and adaptation to the tumour microenvironment. Carcinogenesis 30:377-386.   DOI
34 Han, M., Wen, J. -k., Zheng, B. & Zhang, D. -Q. 2004. Acetylbritannilatone suppresses NO and PGE2 synthesis in RAW 264.7 macrophages through the inhibition of iNOS and COX-2 gene expression. Life Sci. 75:675-684.   DOI
35 Hartmann, M. -A. 1998. Plant sterols and the membrane environment. Trends Plant Sci. 3:170-175.   DOI
36 Hickman, J. A. 1992. Apoptosis induced by anticancer drugs. Cancer Metastasis Rev. 11:121-139.   DOI
37 Huang, G. -J., Pan, C. -H., Liu, F. -C., Wu, T. -S. & Wu, C. -H. 2012. Anti-inflammatory effects of ethanolic extract of Antrodia salmonea in the lipopolysaccharide-stimulated RAW246.7 macrophages and the λ-carrageenan-induced paw edema model. Food Chem. Toxicol. 50:1485-1493.   DOI
38 Luo, X., Su, P. & Zhang, W. 2015. Advances in microalgae-derived phytosterols for functional food and pharmaceutical applications. Mar. Drugs 13:4231-4254.   DOI
39 Lopes, G., Sousa, C., Valentão, P. & Andrade, P. B. 2013. Sterols in algae and health. In Hernández-Ledesma, B. & Herrero, M. (Eds.) Bioactive Compounds from Marine Foods: Plant and Animal Sources. John Wiley & Sons Ltd., Chichester, pp. 173-191.
40 Lowenstein, C. J., Alley, E. W., Raval, P., Snowman, A. M., Snyder, S. H., Russell, S. W. & Murphy, W. J. 1993. Macrophage nitric oxide synthase gene: two upstream regions mediate induction by interferon gamma and lipopolysaccharide. Proc. Natl. Acad. Sci. U. S. A. 20:9730-9734.
41 Ma, W. & Quirion, R. 2008. Does COX2-dependent PGE2 play a role in neuropathic pain? Neurosci. Lett. 437:165-169.   DOI
42 Medzhitov, R. 2008. Origin and physiological roles of inflammation. Nature 454:428-435.   DOI
43 Mosmann, T. 1983. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods 65:55-63.   DOI
44 Nakagawa, T. & Yokozawa, T. 2002. Direct scavenging of nitric oxide and superoxide by green tea. Food Chem. Toxicol. 40:1745-1750.   DOI
45 Nathan, C. 1992. Nitric oxide as a secretory product of mammalian cells. FASEB J. 6:3051-3064.
46 Pieters, R., Huismans, D. R., Leyva, A. & Veerman, A. J. P. 1988. Adaptation of the rapid automated tetrazolium dye based (MTT) assay for chemosensitivity testing in childhood leukemia. Cancer Lett. 41:323-332.   DOI
47 Smith, J. A. 1994. Neutrophils, host defense, and inflammation: a double-edged sword. J. Leukoc. Biol. 56:672-686.   DOI