Browse > Article
http://dx.doi.org/10.4490/algae.2016.31.8.18

Effects of nitrogen sources on cell growth and biochemical composition of marine chlorophyte Tetraselmis sp. for lipid production  

Kim, Garam (Department of Environmental Engineering and Energy, Myongji University)
Mujtaba, Ghulam (Department of Environmental Engineering and Energy, Myongji University)
Lee, Kisay (Department of Environmental Engineering and Energy, Myongji University)
Publication Information
ALGAE / v.31, no.3, 2016 , pp. 257-266 More about this Journal
Abstract
Nitrogen is one of the most critical nutrients affecting cell growth and biochemical composition of microalgae, ultimately determining the lipid or carbohydrate productivity for biofuels. In order to investigate the effect of nitrogen sources on the cell growth and biochemical composition of the marine microalga Tetraselmis sp., nine different N sources, including NaNO3, KNO3, NH4NO3, NH4HCO3, NH4Cl, CH3COONH4, urea, glycine, and yeast extract were compared at the given concentration of 8.82 mM. Higher biomass concentration was achieved under organic nitrogen sources, such as yeast extract (2.23 g L−1) and glycine (1.62 g L−1), compared to nitrate- (1.45 g L−1) or ammonium-N (0.98 g L−1). All ammonium sources showed an inhibition of cell growth, but accumulated higher lipids, showing a maximum content of 28.3% in ammonium bicarbonate. When Tetraselmis sp. was cultivated using yeast extract, the highest lipid productivity of 36.0 mg L−1 d−1 was achieved, followed by glycine 21.5 mg L−1 d−1 and nitrate 19.9 mg L−1 d−1. Ammonium bicarbonate resulted in the lowest lipid productivity of 14.4 mg L−1 d−1. The major fatty acids in Tetraselmis sp. were palmitic, oleic, linoleic and linolenic acids, regardless of the nutritional compositions, indicating the suitability of this species for biodiesel production.
Keywords
biochemical composition; fatty acid profile; mixotrophic culture; nitrogen sources; Tetraselmis;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Lourenço, S. O., Barbarino, E., Mancini-Filho, J., Schinke, K. P. & Aidar, E. 2002. Effects of different nitrogen sources on the growth and biochemical profile of 10 marine microalgae in batch culture: an evaluation for aquaculture. Phycologia 41:158-168.   DOI
2 Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193:265-275.
3 Mata, T. M., Martins, A. A. & Caetano, N. S. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sustain. Energy Rev. 14:217-232.   DOI
4 Muthuraj, M., Kumar, V., Palabhanvi, B. & Das, D. 2014. Evaluation of indigenous microalgal isolate Chlorella sp. FC2 IITG as a cell factory for biodiesel production and scale up in outdoor conditions. J. Ind. Microbiol. Biotechnol. 41:499-511.   DOI
5 Norici, A., Dalsass, A. & Giordano, M. 2002. Role of phosphoenolpyruvate carboxylase in anaplerosis in the green microalga Dunaliella salina cultured under different nitrogen regimes. Physiol. Plant. 116:186-191.   DOI
6 Wang, J., Sommerfeld, M. R., Lu, C. & Hu, Q. 2013. Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation. Algae 28:193-202.   DOI
7 Wu, L. F., Chen, P. C. & Lee, C. M. 2013. The effects of nitrogen sources and temperatures on cell growth and lipid accumulation of microalgae. Int. Biodeterior. Biodegrad. 85:506-510.   DOI
8 Yen, H. W., Hu, I. C., Chen, C. Y. & Chang, J. S. 2014. Design of photobioreactors for algal cultivation. In Pandey, A., Lee, D. -J., Chisti, Y. & Soccol, C. R. (Eds.) Biofuels from Algae. Elsevier, San Diego, CA, pp. 23-45.
9 Zhu, C. J. & Lee, Y. K. 1997. Determination of biomass dry weight of marine microalgae. J. Appl. Phycol. 9:189-194.   DOI
10 Podevin, M., De Francisci, D., Holdt, S. L. & Angelidaki, I. 2015. Effect of nitrogen source and acclimatization on specific growth rates of microalgae determined by a high-throughput in vivo microplate autofluorescence method. J. Appl. Phycol. 27:1415-1423.   DOI
11 Ramanna, L., Guldhe, A., Rawat, I. & Bux, F. 2014. The optimization of biomass and lipid yields of Chlorella sorokiniana when using wastewater supplemented with different nitrogen sources. Bioresour. Technol. 168:127-135.   DOI
12 Roopnarain, A., Sym, S. & Gray, V. M. 2015. Effect of nitrogenous resource on growth, biochemical composition and ultrastructure of Isochrysis galbana (Isochrysidales, Haptophyta). Phycol. Res. 63:43-50.   DOI
13 Gu, H., Nagle, N., Pienkos, P. T. & Posewitz, M. C. 2015. Nitrogen recycling from fuel-extracted algal biomass: residuals as the sole nitrogen source for culturing Scenedesmus acutus. Bioresour. Technol. 184:153-160.   DOI
14 Campos, H., Boeing, W. J., Dungan, B. N. & Schaub, T. 2014. Cultivating the marine microalga Nannochloropsis salina under various nitrogen sources: effect on biovolume yields, lipid content and composition, and invasive organisms. Biomass Bioenergy 66:301-307.   DOI
15 Chen, M., Tang, H., Ma, H., Holland, T. C., Ng, K. Y. & Salley, S. O. 2011. Effect of nutrients on growth and lipid accumulation in the green algae Dunaliella tertiolecta. Bioresour. Technol. 102:1649-1655.   DOI
16 Dubois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A. & Smith, F. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350-356.   DOI
17 Ferreira, L. S., Rodrigues, M. S., Converti, A., Sato, S. & Carvalho, J. C. M. 2010. A new approach to ammonium sulphate feeding for fed-batch Arthrospira (Spirulina) platensis cultivation in tubular photobioreactor. Biotechnol. Prog. 26:1271-1277.   DOI
18 Fidalgo, J. P., Cid, A., Torres, E., Sukenik, A. & Herrero, C. 1998. Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysis galbana. Aquaculture 166:105-116.   DOI
19 Cai, T., Park, S. Y. & Li, Y. 2013. Nutrient recovery from wastewater streams by microalgae: status and prospects. Renew. Sustain. Energy Rev. 19:360-369.   DOI
20 Ruangsomboon, S. 2015. Effects of different media and nitrogen sources and levels on growth and lipid of green microalga Botryococcus braunii KMITL and its biodiesel properties based on fatty acid composition. Bioresour. Technol. 191:377-384.   DOI
21 Sassano, C. E. N., Gioielli, L. A., Almeida, K. A., Sato, S., Perego, P., Coverti, A. & Carvalho, J. C. M. 2007. Cultivation of Spirulina platensis by continuous process using ammonium chloride as nitrogen source. Biomass Bioenergy 31:593-598.   DOI
22 Serrano, M., Oliveros, R., Sánchez, M., Moraschini, A., Martínez, M. & Aracil, J. 2014. Influence of blending vegetable oil methyl esters on biodiesel fuel properties: oxidative stability and cold flow properties. Energy 65:109-115.   DOI
23 Singh, B., Guldhe, A., Rawat, I. & Bux, F. 2014. Towards a sustainable approach for development of biodiesel from plant and microalgae. Renew. Sustain. Energy Rev. 29:216-245.   DOI
24 Hu, Q. 2013. Environmental effects on cell composition. In Richmond, A. & Hu, Q. (Eds.) Handbook of Microalgal Culture: Applied Phycology and Biotechnology. 2nd ed. Wiley Blackwell, West Sussex, pp. 114-122.
25 Van Wychen, S., Ramirez, K. & Laurens, L. M. L. 2013. Determination of total lipids as fatty acid methyl esters (FAME) by in situ transesterification. Laboratory Analytical Procedure. National Renewable Energy Laboratory, Golden, CO, 12 pp.
26 Wan, M. -X., Wang, R. -M., Xia, J. -L., Rosenberg, J. N., Nie, Z. -Y., Kobayashi, N., Oyler, G. A. & Betenbaugh, M. J. 2012. Physiological evaluation of a new Chlorella sorokiniana isolate for its biomass production and lipid accumulation in photoautotrophic and heterotrophic cultures. Biotechnol. Bioeng. 109:1958-1964.   DOI
27 Solomon, C. M. & Glibert, P. M. 2008. Urease activity in five phytoplankton species. Aquat. Microb. Ecol. 52:149-157.   DOI
28 Guillard, R. R. L. 1975. Culture of phytoplankton for feeding marine invertebrates. In Smith, W. L. & Chanley, M. H. (Eds.) Culture of Marine Invertebrate Animals. Plenum Press, New York, pp. 26-60.
29 Ho, S. -H., Ye, X., Hasunuma, T., Chang, J. -S. & Kondo, A. 2014. Perspectives on engineering strategies for improving biofuel production from microalgae: a critical review. Biotechnol. Adv. 32:1448-1459.   DOI
30 Huang, C. -C., Hung, J. -J., Peng, S. -H. & Chen, C. -N. N. 2012. Cultivation of a thermos-tolerant microalga in an outdoor photobioreactor: influences of CO2 and nitrogen sources on the accelerated growth. Bioresour. Technol. 112:228-233.   DOI
31 Kim, G., Mujtaba, G., Rizwan, M. & Lee, K. 2014. Environmental stress strategies for stimulating lipid production from microalgae for biodiesel. Appl. Chem. Eng. 25:553-558.   DOI
32 Kim, D. G. & Hur, S. B. 2013. Growth and fatty acid composition of three heterotrophic Chlorella species. Algae 28:101-109.   DOI
33 Kim, G., Bae, J. & Lee, K. 2016a. Nitrate repletion strategy for enhancing lipid production from marine microalga Tetraselmis sp. Bioresour. Technol. 205:274-279.   DOI
34 Kim, G., Lee, C. -H. & Lee, K. 2016b. Enhancement of lipid production in marine microalga Tetraselmis sp. through salinity variation. Korean J. Chem. Eng. 33: 230-237.   DOI
35 American Public Health Association. 1995. Standard methods for the examination of water and wastewater. 19th ed. American Public Health Association, Washington, DC, 43 pp.
36 Knothe, G. 2009. Improving biodiesel fuel properties by modifying fatty ester composition. Energy Environ. Sci. 2:759-766.   DOI
37 Bartley, M. L., Boeing, W. J., Daniel, D., Dungan, B. N. & Schaub, T. 2016. Optimization of environmental parameters for Nannochloropsis salina growth and lipid content using the response surface method and invading organisms. J. Appl. Phycol. 28:15-24.   DOI
38 Becker, E. W. 1994. Microalgae biotechnology and microbiology. Cambridge University Press, New York, 18 pp.
39 Bligh, E. G. & Dyer, W. J. 1959. A rapid method for total lipid extraction and purification. Can. J. Biochem. Physiol. 37:911-917.   DOI
40 Kim, Z. -H., Park, H., Hong, S. -J., Lim, S. -M. & Lee, C. -G. 2016c. Development of a floating photobioreactor with internal partitions for efficient utilization of ocean wave into improved mass transfer and algal culture mixing. Bioprocess Biosyst. Eng. 39:713-723.   DOI
41 Konig, A., Pearson, H. W. & Silva, S. A. 1987. Ammonia toxicity to algal growth in waste stabilization ponds. Water Sci. Technol. 19:115-122.
42 Kumar, V., Muthuraj, M., Palabhanvi, B., Ghoshal, A. K. & Das, D. 2014. High cell density lipid rich cultivation of a novel microalgal isolate Chlorella sorokiniana FC6 IITG in a single-stage fed-batch mode under mixotrophic condition. Bioresour. Technol. 170:115-124.   DOI
43 Lapuerta, M., Rodríguez-Fernández, J. & de Mora, E. F. 2009. Correlation for the estimation of the cetane number of biodiesel fuels and implications on the iodine number. Energy Policy 37:4337-4344.   DOI
44 Lee, C. G., Seong, D. H., Yim, S. M. & Bae, J. H. 2015. A novel Tetraselmis sp. and method for preparing biodiesel with this strain. Korean Patent 10-1509562.
45 Li, Y., Horsman, M., Wang, B., Wu, N. & Lan, C. Q. 2008. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 81:629-636.   DOI
46 Li, T., Zheng, Y., Yu, L. & Chen, S. 2013. High productivity cultivation of a heat-resistant microalga Chlorella sorokiniana for biofuel production. Bioresour. Technol. 131:60-67.   DOI