Browse > Article
http://dx.doi.org/10.4490/algae.2016.31.9.10

Spatial distribution of cold-adapted Synechococcus during spring in seas adjacent to Korea  

Choi, Dong Han (Marine Life and Ecosystem Division, Korea Institute of Ocean Science and Technology)
Noh, Jae Hoon (Marine Life and Ecosystem Division, Korea Institute of Ocean Science and Technology)
An, Sung Min (Marine Life and Ecosystem Division, Korea Institute of Ocean Science and Technology)
Choi, Yu Ri (Marine Life and Ecosystem Division, Korea Institute of Ocean Science and Technology)
Lee, Howon (Department of Oceanography, Pusan National University)
Ra, Kongtae (Marine Environmental Analyses Remediation Division, Korea Institute of Ocean Science and Technology)
Kim, Dongseon (Marine Environmental Analyses Remediation Division, Korea Institute of Ocean Science and Technology)
Rho, TaeKeun (Marine Environmental Analyses Remediation Division, Korea Institute of Ocean Science and Technology)
Lee, Sang Heon (Department of Oceanography, Pusan National University)
Kim, Kyung-Tae (Marine Environmental Analyses Remediation Division, Korea Institute of Ocean Science and Technology)
Chang, Kyung-Il (School of Earth and Environmental Sciences, Seoul National University)
Lee, Jung Ho (Department of Biology Education, Daegu University)
Publication Information
ALGAE / v.31, no.3, 2016 , pp. 231-241 More about this Journal
Abstract
We examined the genetic diversity and abundance of picocyanobacteria using barcoded amplicon sequencing approaches and flow cytometry in the East Sea and the East China Sea to determine the distribution patterns of diversity during spring in seas adjacent to the Korean Peninsula. Synechococcus clades I and IV, which have been known as cold-adapted ecotypes, dominated at most stations. However, the relative abundances of the two dominant clades differed in their spatial patterns. Clade I was exclusively dominant in the shelf area of the East China Sea and the north East Sea. However, the dominant genotypes belonging to clade I had different spatial distributions in the two areas and responded oppositely to seawater temperature. The dominance of distinct genotypes under the different ecological conditions suggests the presence of ecologically different ecotypes within the clade. Abundances of clade IV were greater than those of clade I at most stations in the southwest East Sea, showing an apparently different pattern from that of the other areas. A warm-water adapted clade II was observed at significant levels only at stations located in the eastern East China Sea affected by a branch of the warm Kuroshio Current. These results suggest that the physicochemical properties of influencing water masses play an important role in determining the distribution of Synechococcus genotypes.
Keywords
diversity; East China Sea; East Sea; Japan Basin; Synechococcus; Ulleung Basin;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Ahlgren, N. A. & Rocap, G. 2012. Diversity and distribution of marine Synechococcus: multiple gene phylogenies for consensus classification and development of qPCR assays for sensitive measurement of clades in the ocean. Front. Microbiol. 3:213.
2 Choi, D. H. 2012. Picocyanobacterial diversity and distribution during summer in the northern East China Sea. Ocean Polar Res. 34:19-28. (In Korean).   DOI
3 Choi, D. H., An, S. M., Choi, Y. R., Roh, H. S. & Noh, J. H. 2015a. Seasonal variation of picocyanobacterial community composition in seawaters around Dokdo, Korea. The Sea, J. Korean Soc. Oceanogr. 20:192-198. (In Korean).
4 Choi, D. H. & Noh, J. H. 2009. Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East Sea. FEMS Microbiol. Ecol. 69:439-448.   DOI
5 Choi, D. H., Noh, J. H. & Lee, J. -H. 2014. Application of pyrosequencing method for investigating the diversity of Synechococcus subcluster 5.1 in open ocean. Microbes Environ. 29:17-22.   DOI
6 Huang, S., Wilhelm, S. W., Harvey, H. R., Taylor, K., Jiao, N. & Chen, F. 2012. Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME J. 6:285-297.   DOI
7 Illumina. 2013. 16S Metagenomic Sequencing Library Preparation. Available from: http://support.illumina.com/downloads/16s_metagenomic_sequencing_library_preparation.html. Accessed Dec 28, 2015.
8 Johnson, Z. I., Zinser, E. R., Coe, A., McNulty, N. P., Woodward, E. M. S. & Chisholm, S. W. 2006. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311:1737-1740.   DOI
9 Kim, K. -R., Lee, S. H., Park, K. -A., Park, J. J., Suh, Y. -S., Lee, D. -K., Kang, D. -J. & Chang, K. -I. 2016. General Introduction. In Chang, K. -I., Zhang, C. -I., Park, C., Kang, D. -J., Ju, S. -J., Lee, S. -H. & Wimbush, M. (Eds.) Oceanography of the East Sea (Japan Sea). Springer International Publishing, Cham, pp. 1-32.
10 Lavin, P., Gomez, P., González, B. & Ulloa, O. 2008. Diversity of the marine picocyanobacteria Prochlorococcus and Synechococcus assessed by terminal restriction fragment length polymorphisms of 16S-23S rRNA internal transcribed spacer sequences. Rev. Chil. Hist. Nat. 81:515-531.
11 Zwirglmaier, K., Jardillier, L., Ostrowski, M., Mazard, S., Garczarek, L., Vaulot, D., Not, F., Massana, R., Ulloa, O. & Scanlan, D. J. 2008. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ. Microbiol. 10:147-161.
12 Tai, V. & Palenik, B. 2009. Temporal variation of Synechococcus clades at a coastal Pacific Ocean monitoring site. ISME J. 3:903-915.   DOI
13 Toledo, G. & Palenik, B. 1997. Synechococcus diversity in the California Current as seen by RNA polymerase (rpoC1) gene sequences of isolated strains. Appl. Environ. Microbiol. 63:4298-4303.
14 West, N. J., Lebaron, P., Strutton, P. G. & Suzuki, M. T. 2011. A novel clade of Prochlorococcus found in high nutrient low chlorophyll waters in the South and Equatorial Pacific Ocean. ISME J. 5:933-944.   DOI
15 Choi, D. H., Noh, J. H. & Shim, J. 2013. Seasonal changes in picocyanobacterial diversity as revealed by pyrosequencing in temperate waters of the East China Sea and the East Sea. Aquat. Microb. Ecol. 71:75-90.   DOI
16 Choi, D. H., Park, K. -T., An, S. M., Lee, K., Cho, J. -C., Lee, J. -H., Kim, D., Jeon, D. & Noh, J. H. 2015b. Pyrosequencing revealed SAR116 clade as dominant dddP-containing bacteria in oligotrophic NW Pacific Ocean. PLoS One 10:e0116271.   DOI
17 Lavin, P., González, B., Santibáñez, J. F., Scanlan, D. J. & Ulloa, O. 2010. Novel lineages of Prochlorococcus thrive within the oxygen minimum zone of the eastern tropical South Pacific. Environ. Microbiol. Rep. 2:728-738.   DOI
18 Lee, D. -K., Seung, Y. H., Kim, Y. -B., Kim, Y. H., Shin, H. -R., Shin, C. -W. & Chang, K. -I. 2016. Circulation. In Chang, K. -I., Zhang, C. -I., Park, C., Kang, D. -J., Ju, S. -J., Lee, S. -H. & Wimbush, M. (Eds.) Oceanography of the East Sea (Japan Sea). Springer International Publishing, Cham, pp. 87-126.
19 Yue, J. C. & Clayton, M. K. 2005. A similarity measure based on species proportions. Commun. Stat. Theory Methods 34:2123-2131.   DOI
20 Zwirglmaier, K., Heywood, J. L., Chamberlain, K., Woodward, E. M. S., Zubkov, M. V. & Scanlan, D. J. 2007. Basin-scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean. Environ. Microbiol. 9:1278-1290.   DOI
21 Mazard, S., Ostrowski, M., Partensky, F. & Scanlan, D. J. 2012. Multi-locus sequence analysis, taxonomic resolution and biogeography of marine Synechococcus. Environ. Microbiol. 14:372-386.   DOI
22 Choi, D. H., Selph, K. E. & Noh, J. H. 2015c. Niche partitioning of picocyanobacterial lineages in the oligotrophic northwestern Pacific Ocean. Algae 30:223-232.   DOI
23 Choi, J. K., Noh, J. H., Orlova, T., Park, M. -O., Lee, S. H., Park, Y. -J., Son, S., Stonik, I. & Choi, D. H. 2016. Phytoplankton and primary production. In Chang, K. -I., Zhang, C. -I., Park, C., Kang, D. -J., Ju, S. -J., Lee, S. -H. & Wimbush, M. (Eds.) Oceanography of the East Sea (Japan Sea). Springer International Publishing, Cham, pp. 217-246.
24 Dufresne, A., Ostrowski, M., Scanlan, D. J., Garczarek, L., Mazard, S., Palenik, B. P., Paulsen, I. T., de Marsac, N. T., Wincker, P., Dossat, C., Ferriera, S., Johnson, J., Post, A. F., Hess, W. R. & Partensky, F. 2008. Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol. 9:R90.   DOI
25 Li, W. K. W. 1994. Primary production of prochlorophytes, cyanobacteria, and eukaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol. Oceanogr. 39:169-175.   DOI
26 Liu, H., Nolla, H. A. & Campbell, L. 1997. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat. Microb. Ecol. 12:39-47.   DOI
27 Mühling, M., Fuller, N. J., Somerfield, P. J., Post, A. F., Wilson, W. H., Scanlan, D. J., Joint, I. & Mann, N. H. 2006. High resolution genetic diversity studies of marine Synechococcus isolates using rpoC1-based restriction fragment length polymorphism. Aquat. Microb. Ecol. 45:263-275.   DOI
28 Olson, R. J., Shalapyonok, A. & Sosik, H. M. 2003. An automated submersible flow cytometer for analyzing picoand nanophytoplankton: FlowCytobot. Deep Sea Res. Part I Oceanogr. Res. Pap. 50:301-315.   DOI
29 Farrant, G. K., Doré, H., Cornejo-Castillo, F. M., Partensky, F., Ratin, M., Ostrowski, M., Pitt, F. D., Wincker, P., Scanlan, D. J., Iudicone, D., Acinas, S. G. & Garczarek, L. 2016. Delineating ecologically significant taxonomic units from global patterns of marine picocyanobacteria. Proc. Natl. Acad. Sci. U. S. A. 113:E3365-E3374.   DOI
30 West, N. J. & Scanlan, D. J. 1999. Niche-partitioning of Prochlorococcus populations in a stratified water column in the eastern North Atlantic Ocean. Appl. Environ. Microbiol. 65:2585-2591.
31 Fuller, N. J., Marie, D., Partensky, F., Vaulot, D., Post, A. F. & Scanlan, D. J. 2003. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl Environ. Microbiol. 69:2430-2443.   DOI
32 Haverkamp, T., Acinas, S. G., Doeleman, M., Stomp, M., Huisman, J. & Stal, L. J. 2008. Diversity and phylogeny of Baltic Sea picocyanobacteria inferred from their ITS and phycobiliprotein operons. Environ. Microbiol. 10:174-188.
33 Sohm, J. A., Ahlgren, N. A., Thomson, Z. J., Williams, C., Moffett, J. W., Saito, M. A., Webb, E. A. & Rocap, G. 2016. Cooccurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J. 10:333-345.   DOI
34 Paerl, R. W., Foster, R. A., Jenkins, B. D., Montoya, J. P. & Zehr, J. P. 2008. Phylogenetic diversity of cyanobacterial narB genes from various marine habitats. Environ. Microbiol. 10:3377-3387.   DOI
35 Parsons, T. R., Maita, Y. & Lalli, C. M. 1984. A manual of chemical and biological methods for seawater analysis. Amsterdam, Pergamon, 188 pp.
36 Rocap, G., Distel, D. L., Waterbury, J. B. & Chisholm, S. W. 2002. Resolution of Prochlorococcus and Synechococcus ecotypes using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl. Environmen. Microbiol. 68:1180-1191.   DOI
37 Ahlgren, N. A. & Rocap, G. 2006. Culture isolation and culture-independent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and N physiologies. Appl. Environ. Microbiol. 72:7193-7204.   DOI
38 Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J. & Weber, C. F. 2009. Introducing Mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environmen. Microbiol. 75:7537-7541.   DOI
39 Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688-2690.   DOI
40 Tai, V., Burton, R. S. & Palenik, B. 2011. Temporal and spatial distributions of marine Synechococcus in the Southern California Bight assessed by hybridization to bead-arrays. Mar. Ecol. Prog. Ser. 426:133-147.   DOI