Browse > Article
http://dx.doi.org/10.4490/algae.2016.31.11.10

Fermented Saccharina japonica (Phaeophyta) improves neuritogenic activity and TMT-induced cognitive deficits in rats  

Park, Hyun-Jung (Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University)
Lee, Mi-Sook (Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University)
Shim, Hyun Soo (Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University)
Lee, Gyeong-Ran (Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University)
Chung, Sun Yong (Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University)
Kang, Young Mi (Marine Bioprocess Co., Ltd.)
Lee, Bae-Jin (Marine Bioprocess Co., Ltd.)
Seo, Yong Bae (Marine Bioprocess Co., Ltd.)
Kim, Kyung Soo (Department of Integrative Medicine and the Research Center of Behavioral Medicine, College of Medicine, The Catholic University of Korea)
Shim, Insop (Department of Science in Korean Medicine, Graduate School, College of Korean Medicine, Kyung Hee University)
Publication Information
ALGAE / v.31, no.1, 2016 , pp. 73-84 More about this Journal
Abstract
Marine organisms are frequently used to be harmful and have lower side effects than synthetic drugs. The cognitive improving efficacy of gamma aminobutyric acid-enriched fermented Saccharina japonica (FSJ) on the memory deficient rats, which were induced by trimethyltin chloride (TMT), was investigated by assessing the Morris water maze test and by performing choline acetyltransferase (ChAT), cAMP response element binding protein (CREB), and brain derived neurotrophic factor (BDNF) immunohistochemistry. The neurite outgrowth of Neuro2a cells was assessed in order to examine the underlying mechanisms of the memory enhancing effects of FSJ. Treatment with FSJ tended to shorten the latency to find the platform in the acquisition test of the Morris water maze at the second and fourth day compared to the control group. In the probe trial, the FSJ treated group increased time spent in the target quadrant, compared to that of the control group. Consistent with the behavioral data, these treatments recovered the loss of ChAT, CREB, and BDNF immunepositive neurons in the hippocampus produced by TMT. Treatment with FSJ markedly stimulated neurite outgrowth of the Neuro2a cells as compared to that of the controls. These findings demonstrate that FSJ may be useful for improving the cognitive function via regulation of neurotrophic marker enzyme activity.
Keywords
brain derived neurotrophic factor; cAMP response element binding protein; gamma aminobutyric acid; Morris water maze; Saccharina japonica; trimethyltin;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Paxinos, G., Watson, C., Pennisi, M. & Topple, A. 1985. Bregma, lambda and the interaural midpoint in stereotaxic surgery with rats of different sex, strain and weight. J. Neurosci. Methods 13:139-143.   DOI
2 Swartzwelder, H. S., Hepler, J., Holahan, W., King, S. E., Leverenz, H. A., Miller, P. A. & Myers, R. D. 1982. Imparied maze performance in the rat caused by trimethyltin treatment: problem-solving deficits and perseveration. Neurobehav. Toxicol. Teratol. 4:169-176.
3 Thoenen, H. 1995. Neurotrophins and neuronal plasticity. Science 270:593-598.   DOI
4 Ueno, H. 2000. Enzymatic and structural aspects on glutamate decarboxylase. J. Mol. Catal. B Enzym. 10:67-79.   DOI
5 Walsh, T. J., Miller, D. B. & Dyer, R. S. 1982. Trimethyltin, a selective limbic system neurotoxicant, impairs radialarm maze performance. Neurobehav. Toxicol. Teratol. 4:177-183.
6 Zhao, T. F., Xu, C. X., Li, Z. W., Xie, F., Zhao, Y. T., Wang, S. Q., Luo, C. H., Lu, R. S., Ni, G. L., Ku, Z. Q., Ni, Y. F., Qian, Q. & Chen, X. Q. 1982. Effect of Tremella fuciformis Berk on acute radiation sickness in dogs (author’s transl). Zhongguo Yi Xue Ke Xue Yuan Xue Bao 4:20-23.
7 Watanabe, M., Fuda, H., Jin, S., Sakurai, T., Hui, S. -P., Takeda, S., Watanabe, T., Koike, T. & Chiba, H. 2012. A phenolic antioxidant from the Pacific oyster (Crassostrea gigas) inhibits oxidation of cultured human hepatocytes mediated by diphenyl-1-pyrenylphosphine. Food Chem. 134:2086-2089.   DOI
8 Woodruff, M. L., Baisden, R. H., Cannon, R. L., Kalbfleisch, J. & Freeman, J. N. 3rd. 1994. Effects of trimethyltin on acquisition and reversal of a light-dark discrimination by rats. Physiol. Behav. 55:1055-1061.   DOI
9 Yokoyama, S., Hiramatsu, J. & Hayakawa, K. 2002. Production of γ-aminobutyric acid from alcohol distillery lees by Lactobacillus brevis IFO-12005. J. Biosci. Bioeng. 93:95-97.   DOI
10 Brown, A. W., Aldridge, W. N., Street, B. W. & Verschoyle, R. D. 1979. The behavioral and neuropathologic sequelae of intoxication by trimethyltin compounds in the rat. Am. J. Pathol. 97:59-82.
11 Alessandri, B., FitzGerald, R. E., Schaeppi, U., Krinke, G. J. & Classen, W. 1994. The use of an unbaited tunnel maze in neurotoxicology: I. Trimethyltin-induced brain lesions. Neurotoxicology 15:349-357.
12 Balaban, C. D., O’Callaghan, J. P. & Billingsley, M. L. 1988. Trimethyltin-induced neuronal damage in the rat brain: comparative studies using silver degeneration stains, immunocytochemistry and immunoassay for neuronotypic and gliotypic proteins. Neuroscience 26:337-361.   DOI
13 Chang, L. W. & Dyer, R. S. 1985. Septotemporal gradients of trimethyltin-induced hippocampal lesions. Neurobehav. Toxicol. Teratol. 7:43-49.
14 Bourtchuladze, R., Frenguelli, B., Blendy, J., Cioffi, D., Schutz, G. & Silva, A. J. 1994. Deficient long-term memory in mice with a targeted mutation of the cAMP-responsive element-binding protein. Cell 79:59-68.   DOI
15 Chang, L. W. & Dyer, R. S. 1983a. A time-course study of trimethyltin induced neuropathology in rats. Neurobehav. Toxicol. Teratol. 5:443-459.
16 Chang, L. W. & Dyer, R. S. 1983b. Trimethyltin induced pathology in sensory neurons. Neurobehav. Toxicol. Teratol. 5:673-696.
17 Chang, L. W., Tiemeyer, T. M., Wenger, G. R. & McMillan, D. E. 1983a. Neuropathology of trimethyltin intoxication. III. Changes in the brain stem neurons. Environ. Res. 30:399-411.   DOI
18 Chang, L. W., Wenger, G. R., McMillan, D. E. & Dyer, R. S. 1983b. Species and strain comparison of acute neurotoxic effects of trimethyltin in mice and rats. Neurobehav. Toxicol. Teratol. 5:337-350.
19 Farmer, J., Zhao, X., van Praag, H., Wodtke, K., Gage, F. H. & Christie, B. R. 2004. Effects of voluntary exercise on synaptic plasticity and gene expression in the dentate gyrus of adult male Sprague-Dawley rats in vivo. Neuroscience 124:71-79.   DOI
20 Choi, S. -I., Lee, J. -W., Park, S. -M., Lee, M. -Y., Ji, G. -E., Park, M. -S. & Heo, T. -R. 2006. Improvement of γ-aminobutyric acid (GABA) production using cell entrapment of Lactobacillus brevis GABA 057. J. Microbiol. Biotechnol. 16:562-568.
21 Cotman, C. W. & Berchtold, N. C. 2002. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci. 25:295-301.   DOI
22 Geloso, M. C., Corvino, V. & Michetti, F. 2011. Trimethyltininduced hippocampal degeneration as a tool to investigate neurodegenerative processes. Neurochem. Int. 58:729-738.   DOI
23 Earley, B., Burke, M. & Leonard, B. E. 1992. Behavioural, biochemical and histological effects of trimethyltin (TMT) induced brain damage in the rat. Neurochem. Int. 21:351-366.   DOI
24 Fortemps, E., Amand, G., Bomboir, A., Lauwerys, R. & Laterre, E. C. 1978. Trimethyltin poisoning: report of two cases. Int. Arch. Occup. Environ. Health 41:1-6.   DOI
25 Gao, W., Lin, T., Li, T., Yu, M., Hu, X. & Duan, D. 2013. Sodium alginate/heparin composites on PVC surfaces inhibit the thrombosis and platelet adhesion: applications in cardiac surgery. Int. J. Clin. Exp. Med. 6:259-268.
26 Gooney, M., Shaw, K., Kelly, A., O’Mara, S. M. & Lynch, M. A. 2002. Long-term potentiation and spatial learning are associated with increased phosphorylation of TrkB and extracellular signal-regulated kinase (ERK) in the dentate gyrus: evidence for a role for brain-derived neurotrophic factor. Behav. Neurosci. 116:455-463.   DOI
27 Harikrishnan, R., Kim, M. -C., Kim, J. -S., Han, Y. -J., Jang, I.-S., Balasundaram, C. & Heo, M. S. 2011. Immunomodulatory effect of sodium alginate enriched diet in kelp grouper Epinephelus brneus against Streptococcus iniae. Fish Shellfish Immunol. 30:543-549.   DOI
28 Gunasekar, P. G., Mickova, V., Kotyzova, D., Li, L., Borowitz, J. L., Eybl, V. & Isom, G. E. 2001. Role of astrocytes in trimethyltin neurotoxicity. J. Biochem. Mol. Toxicol. 15:256-262.   DOI
29 Guo, F. C., Kwakkel, R. P., Williams, B. A., Parmentier, H. K., Li, W. K., Yang, Z. Q. & Verstegen, M. W. 2004. Effects of mushroom and herb polysaccharides on cellular and humoral immune responses of Eimeria tenella-infected chickens. Poult. Sci. 83:1124-1132.   DOI
30 Hagan, J. J., Jansen, J. H. & Broekkamp, C. L. 1988. Selective behavioural impairment after acute intoxication with trimethyltin (TMT) in rats. Neurotoxicology 9:53-74.
31 Heldt, S. A., Stanek, L., Chhatwal, J. P. & Ressler, K. J. 2007. Hippocampus-specific deletion of BDNF in adult mice impairs spatial memory and extinction of aversive memories. Mol. Psychiatr. 12:656-670.   DOI
32 Ishida, N., Akaike, M., Tsutsumi, S., Kanai, H., Masui, A., Sadamatsu, M., Kuroda, Y., Watanabe, Y., McEwen, B. S. & Kato, N. 1997. Trimethyltin syndrome as a hippocampal degeneration model: temporal changes and neurochemical features of seizure susceptibility and learning impairment. Neuroscience 81:1183-1191.   DOI
33 Jackson, T. & Ramaswami, M. 2003. Prospects of memorymodifying drugs that target the CREB pathway. Curr. Opin. Drug Discov. Devel. 6:712-719.
34 Jenkins, S. M. & Barone, S. Jr. 2004. The neurotoxicant trimethyltin induces apoptosis via caspase activation, p38 protein kinase, and oxidative stress in PC12 cells. Toxicol. Lett. 147:63-72.   DOI
35 Kim, J. Y., Lee, M. Y., Ji, G. E., Lee, Y. S. & Hwang, K. T. 2009. Production of γ-aminobutyric acid in black raspberry juice during fermentation by Lactobacillus brevis GABA100. Int. J. Food Microbiol. 130:12-16.   DOI
36 Jones, J. I. & Clemmons, D. R. 1995. Insulin-like growth factors and their binding proteins: biological actions. Endocr. Rev. 16:3-34.
37 Kang, Y. M., Lee, B. -J., Kim, J. I., Nam, B. -H., Cha, J. -Y., Kim, Y. -M., Ahn, C. -B., Choi, J. -S., Choi, I. S. & Je, J. -Y. 2012. Antioxidant effects of fermented sea tangle (Laminaria japonica) by Lactobacillus brevis BJ20 in individuals with high level of γ-GT: a randomized, double-blind, and placebo-controlled clinical study. Food Chem. Toxicol. 50:1166-1169.   DOI
38 Koczyk, D., Skup, M., Zaremba, M. & Oderfeld-Nowak, B. 1996. Trimethyltin-induced plastic neuronal changes in rat hippocampus are accompanied by astrocytic trophic activity. Acta Neurobiol. Exp. (Wars.) 56:237-241.
39 Kaur, S., Chhabra, R. & Nehru, B. 2013. Ginkgo biloba extract attenuates hippocampal neuronal loss and cognitive dysfunction resulting from trimethyltin in mice. Phytomedicine 20:178-186.   DOI
40 Koczyk, D. 1996. How does trimethyltin affect the brain: facts and hypotheses. Acta Neurobiol. Exp. (Wars.) 56:587-596.
41 Kogan, J. H., Frankland, P. W., Blendy, J. A., Coblentz, J., Marowitz, Z., Schütz, G. & Silva, A. J. 1997. Spaced training induces normal long-term memory in CREB mutant mice. Curr. Biol. 7:1-11.
42 Kook, M. -C., Seo, M. -J., Cheigh, C. -I., Pyun, Y. -R., Cho, S. -C. & Park, H. 2010. Enhanced production of γ-aminobutyric acid using rice bran extracts by Lactobacillus sakei B2-16. J. Microbiol. Biotechnol. 20:763-766.
43 Lee, B. -J., Senevirathne, M., Kim, J. -S., Kim, Y. -M., Lee, M. -S., Jeong, M. -H., Kang, Y. M., Kim, J. I., Nam, B. -H., Ahn, C. -B. & Je, J. -Y. 2010a. Protective effect of fermented sea tangle against ethanol and carbon tetrachlorideinduced hepatic damage in Sprague-Dawley rats. Food Chem. Toxicol. 48:1123-1128.   DOI
44 Korte, M., Carroll, P., Wolf, E., Brem, G., Thoenen, H. & Bonhoeffer, T. 1995. Hippocampal long-term potentiation is impaired in mice lacking brain-derived neurotrophic factor. Proc. Natl. Acad. Sci. U. S. A. 92:8856-8860.   DOI
45 Kuda, T., Nakamura, S., An, C., Takahashi, H., Kimura, B. & Nishizawa, M. 2012. Effects of holdfast of Laminaria japonica on Listeria invasion on enterocyte-like Caco-2 cells and NO production of macrophage RAW 264.7 cells. Appl. Biochem. Biotechnol. 168:928-935.   DOI
46 Lipsky, R. H. & Marini, A. M. 2007. Brain-derived neurotrophic factor in neuronal survival and behavior-related plasticity. Ann. N. Y. Acad. Sci. 1122:130-143.   DOI
47 Küpper, F. C., Carpenter, L. J., Leblanc, C., Toyama, C., Uchida, Y., Maskrey, B. H., Robinson, J., Verhaeghe, E. F., Malin, G., Luther, G. W. 3rd, Kroneck, P. M. H., Kloareg, B., Meyer-Klaucke, W., Muramatsu, Y., Megson, I. L., Potin, P. & Feiters, M. C. 2013. In vivo speciation studies and antioxidant properties of bromine in Laminaria digitata reinforce the significance of iodine accumulation for kelps. J. Exp. Bot. 64:2653-2664.   DOI
48 Lee, B., Sur, B. -J., Han, J. -J., Shim, I., Her, S., Lee, H. -J. & Hahm, D. -H. 2010b. Krill phosphatidylserine improves learning and memory in Morris water maze in aged rats. Prog. Neuropsychopharmacol. Biol. Psychiatry 34:1085-1093.   DOI
49 Leibrock, J., Lottspeich, F., Hohn, A., Hofer, M., Hengerer, B., Masiakowski, P., Thoenen, H. & Barde, Y. -A. 1989. Molecular cloning and expression of brain-derived neurotrophic factor. Nature 341:149-152.   DOI
50 Mantamadiotis, T., Lemberger, T., Bleckmann, S. C., Kern, H., Kretz, O., Villalba, A. M., Tronche, F., Kellendonk, C., Gau, D., Kapfhammer, J., Otto, C., Schmid, W. & Schütz, G. 2002. Disruption of CREB function in brain leads to neurodegeneration. Nat. Genet. 31:47-54.   DOI
51 Liu, P. & Zhao, X. 2013. Facile preparation of well-defined near-monodisperse chitosan/sodium alginate polyelectrolyte complex nanoparticles (CS/SAL NPs) via ionotropic gelification: a suitable technique for drug delivery systems. Biotechnol. J. 8:847-854.   DOI
52 Lonze, B. E. & Ginty, D. D. 2002. Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605-623.   DOI
53 Park, H. -J., Lee, S. Y., Shim, H. S., Kim, J. S., Kim, K. S. & Shim, I. 2012a. Chronic treatment with squid phosphatidylserine activates glucose uptake and ameliorates TMT-induced cognitive deficit in rats via activation of cholinergic systems. Evid. Based Complement. Alternat. Med. 2012:601018.
54 Lu, Y., Christian, K. & Lu, B. 2008. BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobio. Learn. Mem. 89:312-323.   DOI
55 Mizuno, M., Yamada, K., Olariu, A., Nawa, H. & Nabeshima, T. 2000. Involvement of brain-derived neurotrophic factor in spatial memory formation and maintenance in a radial arm maze test in rats. J. Neurosci. 20:7116-7121.
56 Mundy, W. R. & Freudenrich, T. M. 2006. Apoptosis of cerebellar granule cells induced by organotin compounds found in drinking water: involvement of MAP kinases. Neurotoxicology 27:71-81.   DOI
57 Sala, C., Rudolph-Correia, S. & Sheng, M. 2000. Developmentally regulated NMDA receptor-dependent dephosphorylation of cAMP response element-binding protein (CREB) in hippocampal neurons. J. Neurosci. 20:3529-3536.
58 Park, H. -J., Shim, H. S., Ahn, Y. H., Kim, K. S., Park, K. J., Choi, W. K., Ha, H. -C., Kang, J. I., Kim, T. S., Yeo, I. H., Kim, J. S. & Shim, I. 2012b. Tremella fuciformis enhances the neurite outgrowth of PC12 cells and restores trimethyltininduced impairment of memory in rats via activation of CREB transcription and cholinergic systems. Behav. Brain Res. 229:82-90.   DOI
59 Park, H. -J., Shim, H. S., Choi, W. K., Kim, K. S. & Shim, I. 2011. Neuroprotective effect of Lucium chinense fruit on trimethyltin-induced learning and memory deficits in the rats. Exp. Neurobiol. 20:137-143.   DOI