Browse > Article
http://dx.doi.org/10.4490/algae.2016.31.3.5

First record of red macroalgae bloom in Southern Atlantic Brazil  

Martins, Mateus S. (Botany Department, Federal University of Santa Catarina, Campus Universitario de Trindade)
Massocato, Thais F. (Botany Department, Federal University of Santa Catarina, Campus Universitario de Trindade)
Horta, Paulo A. (Botany Department, Federal University of Santa Catarina, Campus Universitario de Trindade)
Barufi, Jose Bonomi (Botany Department, Federal University of Santa Catarina, Campus Universitario de Trindade)
Publication Information
ALGAE / v.31, no.1, 2016 , pp. 33-39 More about this Journal
Abstract
Blooms of macroalgae have grown over the planet in recent decades as a possible result of eutrophication of coastal waters. Visually, a bloom forming can be identified by dominant presence of an organism at the expense of others. In mid-January 2014, a forming bloom of red algae was detected on the beach of Garopaba, Santa Catarina State, Brazil. This aroused the interest of tourists and locals as well as the scientific community. Thus, the objective of this study was to characterize and quantify the photosynthetic floating organisms contributing to this phenomenon. In addition, we qualitatively compared algal composition of the bloom to those deposited in the post-beach area and the adjacent rocky shore community. Five sampling points in random patches of floating material were defined. At each point, five replicates were taken with a cube of 32,768 cm3, resulting in a total of 25 samples. Samples were collected in the inner area enclosed by a PVC quadrate of about 900 cm² from the shore and the specimens found in post-beach zone (wrack). Twenty-four taxa of macroalgae were found in the bloom, with Aglaothamnion uruguayense as the dominance one. Ten taxa were found on shore. Only four taxa were found in the post-beach area. The biomass estimated for A. uruguayense in the floating material was 8.35 tons with an estimated area of 52,770 m2 . It is possible that this huge biomass value of the bloom is related to the local nutrient intake, and our results reinforce the necessity of coastal integrative management initiatives.
Keywords
abundance; Aglaothamnion uruguayense; bloom; Garopaba; red algae;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Carmichael, W. W., Drapeau, C. & Anderson, D. M. 2000. Harvesting of Aphanizomenon flos-aquae Ralfs ex Born. & Flah. var. flos-aquae (Cyanobacteria) from Klamath Lake for human dietary use. J. Appl. Phycol. 12:585-595.   DOI
2 Barbarino, E. & Lourenço, S. O. 2005. An evaluation of methods for extraction and quantification of protein from marine macro- and microalgae. J. Appl. Phycol. 17:447-460   DOI
3 Batista, M. B. 2012. Macrófitas Marinhas da Ilha de Santa Catarina, Brasil. M.S. thesis, Federal University of Santa Catarina, Florianópolis, SC, Brazil, 104 pp
4 Boraso de Zaixso, A. L. 2013. Elementos para el estudio de las macroalgas de Argentina. Con colaboración de J. M. Zaixso. Universitaria de la Patagonia, Comodoro Rivadavia, 204 pp.
5 Cartensen, J., Henriksen, P. & Heiskanen, A. -S. 2007. Summer algal blooms in shallow estuaries: definition, mechanisms, and link to eutrophication. Limnol. Oceanogr. 52:370-384.   DOI
6 Freitas, J. C., Ogata, M., Kodama, M., Martinez, S. C. G., Lima, M. F. & Monteiro, C. K. 1992. Possible microbial source of guanidine neurotoxins found in the mussel Perna perna (Mollusca, Bivalvia, Mytilidae). In Gopalakrishnakone, P. & Tan, C. K. (Eds.) Recent Advances in Toxicology Research, Vol. 2. National University of Singapore, Singapore, pp. 589-596.
7 Cordeiro-Marino, M. 1978. Rodofíceas bentônicas marinhas do estado de Santa Catarina. Rickia 7:1-243.
8 Dailer, M. L., Smith, J. E. & Smith, C. M. 2012. Responses of bloom forming and non-bloom forming macroalgae to nutrient enrichment in Hawaii, USA. Harmful Algae 17:111-125.   DOI
9 Figueiredo, D. R., Azeiteiro, U. M., Esteves, S. M., Gonçalves, F. J. M. & Pereira, M. J. 2004. Microcystin-producing blooms: a serious global public health issue. Ecotoxicol. Environ. Saf. 59:151-163.   DOI
10 Glazer, A. N. 1994. Phycobiliproteins: a family of valuable, widely used fluorophores. J. Appl. Phycol. 6:105-112.   DOI
11 Gordon, D. M. & McComb, A. J. 1989. Growth and production of the green alga Cladophora montagneana in a eutrophic Australian estuary and its interpretation using a computer program. Water Res. 23:633-645.   DOI
12 Lapointe, B. E. & Bedford, B. J. 2007. Drift rhodophyte blooms emerge in Lee County, Florida, USA: evidence of escalating coastal eutrophication. Harmful Algae 6:421-437.   DOI
13 Gupta, S., Sharma, R., Soni, S. K. & Sharma, S. 2012. Biomass utilization of waste algal consortium for extraction of algal oil. J. Algal Biomass Util. 3:34-38.
14 Hay, M. E. & Fenical, W. 1988. Marine plant-herbivore interactions: the ecology of chemical defense. Annu. Rev. Ecol. Evol. Syst. 19:111-145.   DOI
15 Joly, A. B. 1967. Gêneros de algas marinhas da Costa Atlantica Latino-Americana. Universidade de São Paulo, São Paulo, 461 pp.
16 Kang, E. J., Kim, J. -H., Kim, K., Choi, H. -G. & Kim, K. Y. 2015. Re-evaluation of green tide-forming species in the Yellow Sea. Algae 29:267-277.
17 Kapraun, D. F. & Searles, R. B. 1990. Planktonic bloom of an introduced species of Polysiphonia (Ceramiales, Rhodophyta) along the coast of North Carolina, USA. Hydrobiologia 204/205:269-274.   DOI
18 Lapointe, B. E., Barile, P. J., Littler, M. M. & Littler, D. S. 2005. Macroalgal blooms on southeast Florida coral reefs. II. Cross-shelf discrimination of nitrogen sources indicates widespread assimilation of sewage nitrogen. Harmful Algae 4:1106-1122.   DOI
19 Lapointe, B. E. & Bedford, B. J. 2010. Ecology and nutrition of invasive Caulerpa brachypus f. parvifolia blooms on coral reefs off southeast Florida, USA. Harmful Algae 9:1-12.   DOI
20 Littler, D. S., Littler, M. M. & Hanisak, M. D. 2008. Submersed plants of the Indian River Lagoon. Offshore Graphics Inc., Washington, DC, 286 pp.
21 Nelson, T. A., Nelson, A. V. & Tjoelker, M. 2003. Seasonal and spatial patterns of “green tides” (Ulvoid algal blooms) and related water quality parameters in the coastal waters of Washington State, USA. Bot. Mar. 46:263-275.
22 Liu, D., Keesing, J. K., Dong, Z., Zhen, Y., Di, B., Shi, Y., Fearns, P. & Shi, P. 2010. Recurrence of the world’s largest greentide in 2009 in Yellow Sea, China: Porphyra yezoensis aquaculture rafts confirmed as nursery for macroalgal blooms. Mar. Pollut. Bull. 60:1423-1432.   DOI
23 Lotze, H. K., Worm, B. & Sommer, U. 2000. Propagule banks, herbivory and nutrient supply control population development and dominance patterns in macroalgal blooms. Oikos 89:46-58.   DOI
24 Martins, A. P. 2013. Avaliação do potencial biotecnológico de macroalgas marinhas. Ph.D. dissertation, University of São Paulo, SP, Brazil, 188 pp.
25 Merceron, M. & Morand, P. 2004. Existence of a deep subtidal stock of drifting Ulva in relation to intertidal algal mat developments. J. Sea Res. 52:269-280.   DOI
26 Morand, P. & Briand, X. 1996. Excessive growth of macroalgae: a symptom of evironmental disturbance. Bot. Mar. 39:491-516.
27 Nelson, T. A., Haberlin, K., Nelson, A. V., Ribarich, H., Hotchkiss, R., Van Alstyne, K. L., Buckingham, L., Simunds, D. J. & Fredrickson, K. 2008. Ecological and physiological controls of species composition in green macroalgal blooms. Ecology 89:1287-1298.   DOI
28 Pedersen, M. F. & Borum, J. 1996. Nutrient control of algal growth in estuarine waters: nutrient limitation and the importance of nitrogen requirements and nitrogen storage among phytoplankton and species of macroalgae. Mar. Ecol. Prog. Ser. 142:261-272.   DOI
29 Pedrini, A. G. 2013. Macroalgas (Ocrófitas multicelulares) marinhas do Brasil. Série flora marinha do Brasil. Vol. 3. Technal Books Editora, Rio de Janeiro, RJ, 173 pp.
30 Pedrini, A. G. 2011. Macroalgas (Chlorophyta) e gramas (Magnoliophyta) marinhas do Brasil. Série flora marinha do Brasil. Vol. 2. Technal Books Editora, Rio de Janeiro, RJ, 144 pp.
31 Piriou, J. Y., Ménesguen, A. & Salomon, J. C. 1991. The green tides of algae (Ulva sp.): necessary conditions, development and comparison of sites. In Elliott, M. & Ducrotoy, J. -P. (Eds.) Estuaries and Coasts: Spatial and Temporal Intercomparisons. Olsen & Olsen, Fredensborg, pp. 117-122.
32 Taylor, W. R. 1960. Marine algae of the eastern tropical and subtropical coasts of the Americas. University of Michigan Press, Ann Arbor, MI, 870 pp.
33 Scanlan, C. M., Foden, J., Wells, E. & Best, M. A. 2007. The monitoring of opportunistic macroalgal blooms for the water framework directive. Mar. Pollut. Bull. 55:162-171.   DOI
34 Silva, L. A. 2008. Estudo do processo biotecnológico de produção, extração e recuperação do pigmento ficocianina de Spirulina platensis. M.S. thesis, Federal University of Paraná, Curitiba, PR, Brazil, 87 pp.
35 Taylor, P. D. & Monks, N. 1997. A new cheilostome bryozoan genus pseudoplanktonic on molluscs and algae. Invertbr. Biol. 116:39-51.   DOI
36 Teichberg, M., Fox, S. E., Olsen, Y. S., Valiela, I., Martinetto, P., Iribarne, O., Muto, E. Y., Petti, M. A. V., Corbisier, T. N., Soto-Jiménez, M., Páez-Osuna, F., Castro, P., Freitas, H., Zitelli, A., Cardinaletti, M. & Tagliapietra, D. 2010. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: nutrient enrichment experiments with Ulva spp. Glob. Chang. Biol. 16:2624-2637.
37 Worm, B., Lotze, H. K., Hillebrand, H. & Sommer, U. 2002. Consumer versus resource control of species diversity and ecosystem functioning. Nature 417:848-851.   DOI
38 Valiela, I., Foreman, K., LaMontagne, M., Hersh, D., Costa, J., Peckol, P., DeMeo-Anderson, B., D’Avanzo, C., Babione, M., Sham, C. -H., Brawley, J. & Lajtha, K. 1992. Couplings of watersheds and coastal waters: sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts. Estuaries 15:443-457.   DOI
39 Vieira, L. M. & Migotto, A. E. 2014. Membraniporopsis tubigera (Osburn, 1940) (Bryozoa) on floating substrata: evidence of a dispersal mechanism in the western Atlantic. Mar. Biodivers. 45:155-156.