Browse > Article
http://dx.doi.org/10.4490/algae.2015.30.3.241

In vitro antiviral activity of dieckol and phlorofucofuroeckol-A isolated from edible brown alga Eisenia bicyclis against murine norovirus  

Eom, Sung-Hwan (Korea Food Research Institute)
Moon, Sun-Young (Department of Interdisciplinary Program of Biomedical Engineering, Pukyong National University)
Lee, Dae-Sung (National Marine Biodiversity Institutes of Korea)
Kim, Hyo-Jung (Department of Food Science and Technology, Pukyong National University)
Park, Kunbawui (Food Safety Research Division, National Fisheries Research & Development Institute)
Lee, Eun-Woo (Department of Life Science and Biotechnology, Dongeui University)
Kim, Tae Hoon (Department of Food Science and Biotechnology, Daegu University)
Chung, Yong-Hyun (Department of Ecological Engineering, Pukyong National University)
Lee, Myung-Suk (Department of Microbiology, Pukyong National University)
Kim, Young-Mog (Department of Food Science and Technology, Pukyong National University)
Publication Information
ALGAE / v.30, no.3, 2015 , pp. 241-246 More about this Journal
Abstract
This research was conducted to develop effective and safe marine-derived antiviral compounds against norovirus. The ethyl acetate (EtOAc)-extract from Eisenia bicyclis exhibited strong antiviral activity against murine norovirus (MNV) as a norovirus surrogate. Among the phlorotannins from E. bicyclis, dieckol (DE) and phlorofucofuroeckol-A (PFF) were known to possess the strongest antibacterial activity. In this study, DE and PFF were evaluated for antiviral activity against MNV. DE and PFF exhibited strong anti-MNV activity with 50% effective concentration ($EC_{50}$) of $0.9{\mu}M$. However, PFF exhibited more effective antiviral activity against MNV with higher selective index (668.87) than that of DE (550.60), due to its lower cell toxicity against RAW 264.7. This is the first report on the anti-MNV activity of phlorotannins from seaweed. The results obtained in this study suggest that the phlorotannins could be used as a potential source of natural antiviral agents.
Keywords
antiviral activity; Eisenia bicyclis; murine norovirus; phlorofucofuroeckol-A; phlorotannins;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Atmar, R. L. 2010. Noroviruses: state of the art. Food Environ. Virol. 2:117-126.   DOI
2 Balunas, M. J. & Kinghorn, A. D. 2005. Drug discovery from medicinal plants. Life Sci. 78:431-441.   DOI
3 Belliot, G., Lavaux, A., Souihel, D., Agnello, D. & Pothier, P. 2008. Use of murine norovirus as a surrogate to evaluate resistance of human norovirus to disinfectants. Appl. Environ. Microbiol. 74:3315-3318.   DOI
4 Cannon, J. L., Papafragkou, E., Park, G. W., Osborne, J., Jaykus, L. A. & Vinje, J. 2006. Surrogates for the study of norovirus stability and inactivation in the environment: a comparison of murine norovirus and feline calicivirus. J. Food Prot. 69:2761-2765.
5 Centers for Disease Control and Prevention. 2011. Updated norovirus outbreak management and disease prevention guidelines. MMWR Recomm. Rep. 60:1-18.
6 Choi, Y., Kim, E., Moon, S., Choi, J. -D., Lee, M. -S. & Kim, Y. -M. 2014. Phaeophyta extracts exhibit antiviral activity against feline calicivirus. Fish. Aquat. Sci. 17:155-158.
7 Davis, R., Zivanovic, S., D'Souza, D. H. & Davidson, P. M. 2012. Effectiveness of chitosan on the inactivation of enteric viral surrogates. Food Microbiol. 32:57-62.   DOI
8 Eom, S. -H., Lee, D. -S., Kang, Y. M., Son, K. -T., Jeon, Y. -J. & Kim, Y. -M. 2013a. Application of yeast Candida utilis to ferment Eisenia bicyclis for enhanced antibacterial effect. Appl. Biochem. Biotechnol. 171:569-582.   DOI
9 Eom, S. -H., Lee, M. -S., Lee, E. -W., Kim, Y. -M. & Kim, T. H. 2013b. Pancreatic lipase inhibitory activity of phlorotannins isolated from Eisenia bicyclis. Phytother. Res. 27:148-151.   DOI
10 Goldman, A. S. & Prabhakar, B. S. 1996. Immunology overview in medical microbiology. University of Texas Medical Branch at Galveston, Galveston, TX, pp. 1-29.
11 Goodfellow, I. G., Evans, D. J., Blom, A. M., Kerrigan, D., Miners, J. S., Morgan, B. P. & Spiller, O. B. 2005. Inhibition of coxsackie B virus infection by soluble forms of its receptors: binding affinities, altered particle formation, and competition with cellular receptors. J. Virol. 79:12016-12024.   DOI
12 Guix, S., Asanaka, M., Katayama, K., Crawford, S. E., Neill, F. H., Atmar, R. L. & Estes, M. K. 2007. Norwalk virus RNA is infectious in mammalian cells. J. Virol. 81:12238-12248.   DOI
13 Howell, A. B. & D'Souza, D. H. 2013. The pomegranate: effects on bacteria and viruses that influence human health. Evid. Based. Complement. Alternat. Med. 2013:606212.
14 Jain, R., Sonawane, S. & Mandrekar, N. 2008. Marine organisms: Potential source for drug discovery. Curr. Sci. 94:292.
15 Kim, K. -L., Lee, D. -S., Park, M. -S., Eom, S. -H., Lim, K. -S., Kim, J. -S., Lee, D. -H., Kang, C. -K., Kim, Y. -M. & Lee, M. -S. 2010. Antiviral activity of seaweed extracts against feline calicivirus. Fish. Aquat. Sci. 13:96-101.
16 Kuete, V. & Efferth, T. 2015. African flora has the potential to fight multidrug resistance of cancer. Biomed. Res. Int. 2015:914813.
17 La Rosa, G., Fratini, M., Libera, S. D., Iaconelli, M. & Muscillo, M. 2013. Viral infections acquired indoors through airborne, droplet or contact transmission. Ann. Ist. Super. Sanita. 49:124-132.
18 Lee, S. -G., Cho, H. -G. & Paik, S. -Y. 2014b. Molecular epidemiology of norovirus in South Korea. BMB Rep. 48:61-67.
19 Lay, M. K., Atmar, R. L., Guix, S., Bharadwaj, U., He, H., Neill, F. H., Sastry, K. J., Yao, Q. & Estes, M. K. 2010. Norwalk virus does not replicate in human macrophages or dendritic cells derived from the peripheral blood of susceptible humans. Virology 406:1-11.   DOI
20 Lee, J. -H., Eom, S. -H., Lee, E. -H., Jung, Y. -J., Kim, H. -J., Jo, M. -R., Son, K. -T., Lee, H. -J., Kim, J. H., Lee, M. -S. & Kim, Y. -M. 2014a. In vitro antibacterial and synergistic effect of phlorotannins isolated from edible brown seaweed Eisenia bicyclis against acne-related bacteria. Algae 29:47-55.   DOI
21 Li, D., Baert, L. & Uyttendaele, M. 2013. Inactivation of food-borne viruses using natural biochemical substances. Food Microbiol. 35:1-9.   DOI   ScienceOn
22 Oh, E. -G., Kim, K. -L., Shin, S. B., Son, K. -T., Lee, H. -J., Kim, T. H., Kim, Y, -M., Cho, E. -J., Kim, D. -K., Lee, E. -W., Lee, M. -S., Shin, I. -S. & Kim, J. H. 2013. Antiviral activity of green tea catechins against feline calicivirus as a surrogate for norovirus. Food Sci. Biotechnol. 22:593-598.   DOI
23 Radford, A. D., Coyne, K. P., Dawson, S., Porter, C. J. & Gaskell, R. M. 2007. Feline calicivirus. Vet. Res. 38:319-335.   DOI
24 Su, X., Zivanovic, S. & D'Souza, D. H. 2009. Effect of chitosan on the infectivity of murine norovirus, feline calicivirus, and bacteriophage MS2. J. Food Prot. 72:2623-2628.
25 Zhang, X. -F., Dai, Y. -C., Zhong, W., Tan, M., Lv, Z. -P., Zhou, Y. -C. & Jiang, X. 2012. Tannic acid inhibited norovirus binding to HBGA receptors, a study of 50 Chinese medicinal herbs. Bioorg. Med. Chem. 20:1616-1623.   DOI