Browse > Article
http://dx.doi.org/10.4490/algae.2015.30.3.233

Cytochrome P450 monooxygenase analysis in free-living and symbiotic microalgae Coccomyxa sp. C-169 and Chlorella sp. NC64A  

Mthakathi, Ntsane Trevor (Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology)
Kgosiemang, Ipeleng Kopano Rosinah (Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology)
Chen, Wanping (College of Food Science and Technology, Huazhong Agricultural University)
Mohlatsane, Molikeng Eric (Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology)
Mojahi, Thebeyapelo Jacob (Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology)
Yu, Jae-Hyuk (Department of Bacteriology, University of Wisconsin-Madison)
Mashele, Samson Sitheni (Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology)
Syed, Khajamohiddin (Unit for Drug Discovery Research, Department of Health Sciences, Faculty of Health and Environmental Sciences, Central University of Technology)
Publication Information
ALGAE / v.30, no.3, 2015 , pp. 233-239 More about this Journal
Abstract
Microalgae research is gaining momentum because of their potential biotechnological applications, including the generation of biofuels. Genome sequencing analysis of two model microalgal species, polar free-living Coccomyxa sp. C-169 and symbiotic Chlorella sp. NC64A, revealed insights into the factors responsible for their lifestyle and unravelled biotechnologically valuable proteins. However, genome sequence analysis under-explored cytochrome P450 monooxygenases (P450s), heme-thiolate proteins ubiquitously present in species belonging to different biological kingdoms. In this study we performed genome data-mining, annotation and comparative analysis of P450s in these two model algal species. Sixty-nine P450s were found in two algal species. Coccomyxa sp. showed 40 P450s and Chlorella sp. showed 29 P450s in their genome. Sixty-eight P450s (>100 amino acid in length) were grouped into 32 P450 families and 46 P450 subfamilies. Among the P450 families, 27 P450 families were novel and not found in other biological kingdoms. The new P450 families are CYP745-CYP747, CYP845-CYP863, and CYP904-CYP908. Five P450 families, CYP51, CYP97, CYP710, CYP745, and CYP746, were commonly found between two algal species and 16 and 11 P450 families were unique to Coccomyxa sp. and Chlorella sp. Synteny analysis and gene-structure analysis revealed P450 duplications in both species. Functional analysis based on homolog P450s suggested that CYP51 and CYP710 family members are involved in membrane ergosterol biosynthesis. CYP55 and CYP97 family members are involved in nitric oxide reduction and biosynthesis of carotenoids. This is the first report on comparative analysis of P450s in the microalgal species Coccomyxa sp. C-169 and Chlorella sp. NC64A.
Keywords
carotenoid biosynthesis; Chlorella sp. NC64A; Coccomyxa sp. C-169; cytochrome P450 monooxygenases; nitric oxide reductase; P450nor; symbiosis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Behera, S., Singh, R., Arora, R., Sharma, N. K., Shukla, M. & Kumar, S. 2015. Scope of algae as third generation biofuels. Front. Bioeng. Biotechnol. 2:90.
2 Blanc, G., Agarkova, I., Grimwood, J., Kuo, A., Brueggeman, A., Dunigan, D. D., Gurnon, J., Ladunga, I., Lindquist, E., Lucas, S., Pangilinan, J., Proschold, T., Salamov, A., Schmutz, J., Weeks, D., Yamada, T., Lomsadze, A., Borodovsky, M., Claverie, J. -M., Grigoriev, I. V. & Van Etten, J. L. 2012. The genome of the polar eukaryotic microalga Coccomyxa subellipsoidea reveals traits of cold adaptation. Genome Biol. 13:R39.   DOI
3 Blanc, G., Duncan, G., Agarkova, I., Borodovsky, M., Gurnon, J., Kuo, A., Lindquist, E., Lucas, S., Pangilinan, J., Polle, J., Salamov, A., Terry, A., Yamada, T., Dunigan, D. D., Grigoriev, I. V., Claverie, J. -M. & Van Etten, J. L. 2010. The Chlorella variabilis NC64A genome reveals adaptation to photosymbiosis, coevolution with viruses, and cryptic sex. Plant Cell 22:2943-2955.   DOI
4 Cui, H., Yu, X., Wang, Y., Cui, Y., Li, X., Liu, Z. & Qin, S. 2013. Evolutionary origins, molecular cloning and expression of carotenoid hydroxylases in eukaryotic photosynthetic algae. BMC Genomics 14:457.   DOI
5 De Jesus Raposo, M. F. & De Morais, A. M. M. B. 2015. Microalgae for the prevention of cardiovascular disease and stroke. Life Sci. 125:32-41.   DOI
6 Feyereisen, R. 2011. Arthropod CYPomes illustrate the tempo and mode in P450 evolution. Biochim. Biophys. Acta. 1814:19-28.   DOI
7 Grossman, A. R. 2005. Paths toward algal genomics. Plant Physiol. 137:410-427.   DOI
8 Guengerich, F. P. 1995. Cytochrome P450 proteins and potential utilization in biodegradation. Environ. Health Perspect. 103(Suppl 5):25-28.   DOI
9 Guengerich, F. P. 2002. Cytochrome P450 enzymes in the generation of commercial products. Nat. Rev. Drug Discov. 1:359-366.   DOI   ScienceOn
10 Guengerich, F. P. 2006. Cytochrome P450s and other enzymes in drug metabolism and toxicity. AAPS J. 8:E101-E111.   DOI
11 Hamberger, B. & Bak, S. 2013. Plant P450s as versatile drivers for evolution of species-specific chemical diversity. Philos. Trans. R. Soc. Lond. B Biol. Sci. 368:20120426.   DOI
12 Heckman, D. S., Geiser, D. M., Eidell, B. R., Stauffer, R. L., Kardos, N. L. & Hedges, S. B. 2001. Molecular evidence for the early colonization of land by fungi and plants. Science 293:1129-1133.   DOI
13 Ingelman-Sundberg, M. 2004. Pharmacogenetics of cytochrome P450 and its applications in drug therapy: the past, present and future. Trends Pharmacol. Sci. 25:193-200.   DOI
14 Karakashian, S. J. & Karakashian, M. W. 1965. Evolution and symbiosis in the genus Chlorella and related algae. Evolution 19:368-377.   DOI
15 Kelly, S. L., Lamb, D. C., Baldwin, B. C., Corran, A. J. & Kelly, D. E. 1997. Characterization of Saccharomyces cerevisiae CYP61, sterol delta22-desaturase, and inhibition by azole antifungal agents. J. Biol. Chem. 272:9986-9988.   DOI
16 Letunic, I. & Bork, P. 2011. Interactive Tree of Life v2: online annotation and display of phylogenetic trees made easy. Nucleic Acids Res. 39(Suppl 2):W475-W478.   DOI
17 Kgosiemang, I. K. R., Mashele, S. S. & Syed, K. 2014. Comparative genomics and evolutionary analysis of cytochrome P450 monooxygenases in fungal subphylum Saccharomycotina. J. Pure Appl. Microbiol. 8:291-302.
18 Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J. & Higgins, D. G. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:2947-2948.   DOI
19 Lepesheva, G. I. & Waterman, M. R. 2004. CYP51: the omnipotent P450. Mol. Cell. Endocrinol. 215:165-170.   DOI   ScienceOn
20 Marchler-Bauer, A., Lu, S., Anderson, J. B., Chitsaz, F., Derbyshire, M. K., DeWeese-Scott, C., Fong, J. H., Geer, L. Y., Geer, R. C., Gonzales, N. R., Gwadz, M., Hurwitz, D. I., Jackson, J. D., Ke, Z., Lanczycki, C. J., Lu, F., Marchler, G. H., Mullokandov, M., Omelchenko, M. V., Robertson, C. L., Song, J. S., Thanki, N., Yamashita, R. A., Zhang, D., Zhang, N., Zheng, C. & Bryant, S. H. 2011. CDD: a conserved domain database for the functional annotation of proteins. Nucleic Acids Res. 39:D225-D229.   DOI
21 Morikawa, T., Mizutani, M., Aoki, N., Watanabe, B., Saga, H., Saito, S., Oikawa, A., Suzuki, H., Sakurai, N., Shibata, D., Wadano, A., Sakata, K. & Ohta, D. 2006. Cytochrome P450 CYP710A encodes the sterol C-22 desaturase in Arabidopsis and tomato. Plant Cell 18:1008-1022.   DOI
22 Nelson, D. R. 1998. Cytochrome P450 nomenclature. Methods Mol. Biol. 107:15-24.
23 Nelson, D. R. 2006. Cytochrome P450 nomenclature, 2004. Methods Mol. Biol. 320:1-10.
24 Paternolli, C., Antonini, M., Ghisellini, P. & Nicolini, C. 2004. Recombinant cytochrome P450 immobilization for biosensor applications. Langmuir 20:11706-11712.   DOI
25 Nelson, D. R. 2009. The cytochrome p450 homepage. Hum. Genomics 4:59-65.
26 Nelson, D. R. 2013. A world of cytochrome P450s. Philos. Trans. R Soc. Lond. B Biol. Sci. 368:20120430.   DOI
27 Nelson, D. R., Kamataki, T., Waxman, D. J., Guengerich, F. P., Estabrook, R. W., Feyereisen, R., Gonzalez, F. J., Coon, M. J., Gunsalus, I. C., Gotoh, O., Okuda, K. & Nebert, D. W. 1993. The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol. 12:1-51.   DOI
28 Quinlan, R. F., Shumskaya, M., Bradbury, L. M. T., Beltran, J., Ma, C., Kennelly, E. J. & Wurtzel, E. T. 2012. Synergistic interactions between carotene ring hydroxylases drive lutein formation in plant carotenoid biosynthesis. Plant Physiol. 160:204-214.   DOI
29 Sello, M. M., Jafta, N., Nelson, D. R., Chen, W., Yu, J. -H., Parvez, M., Kgosiemang, I. K. R., Monyaki, R., Raselemane, S. C., Qhanya, L. B., Mthakathi, N. T., Mashele, S. S. & Syed, K. 2015. Diversity and evolution of cytochrome P450 monooxygenases in Oomycetes. Sci. Rep. 5:11572.   DOI
30 Shoun, H., Fushinobu, S., Jiang, L., Kim, S. -W. & Wakagi, T. 2012. Fungal denitrification and nitric oxide reductase cytochrome P450nor. Philos. Trans. R. Soc. Lond. B Biol. Sci. 367:1186-1194.   DOI
31 Specht, E. A. & Mayfield, S. P. 2014. Algae-based oral recombinant vaccines. Front. Microbiol. 5:60.
32 Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688-2690.   DOI
33 Tanimoto, T., Nakahara, K. & Shoun, H. 1992. Diauxic growth of Fusarium oxysporum during aerobic culture in the presence of nitrate/nitrite. Biosci. Biotechnol. Biochem. 56:2058-2059.   DOI
34 Syed, K., Nelson, D. R., Riley, R. & Yadav, J. S. 2013. Genomewide annotation and comparative genomics of cytochrome P450 monooxygenases (P450s) in the polypore species Bjerkandera adusta, Ganoderma sp. and Phlebia brevispora. Mycologia 105:1445-1455.   DOI   ScienceOn
35 Syed, K., Shale, K., Pagadala, N. S. & Tuszynski, J. 2014. Systematic identification and evolutionary analysis of catalytically versatile cytochrome P450 monooxygenase families enriched in model basidiomycete fungi. PLoS ONE 9:e86683.   DOI
36 Syed, K. & Yadav, J. S. 2012. P450 monooxygenases (P450ome) of the model white rot fungus Phanerochaete chrysosporium. Crit. Rev. Microbiol. 38:339-363.   DOI
37 Tiron, O., Bumbac, C., Patroescu, I. V., Badescu, V. R. & Postolache, C. 2015. Granular activated algae for wastewater treatment. Water Sci. Technol. 71:832-839.   DOI
38 Torres, M. A., Barros, M. P., Campos, S. C. G., Pinto, E., Rajamani, S., Sayre, R. T. & Colepicolo, P. 2008. Biochemical biomarkers in algae and marine pollution: a review. Ecotoxicol. Environ. Saf. 71:1-15.   DOI
39 Urlacher, V. B. & Eiben, S. 2006. Cytochrome P450 monooxygenases: perspectives for synthetic application. Trends Biotechnol. 24:324-330.   DOI   ScienceOn
40 Wang, H. -M. D., Chen, C. -C., Huynh, P. & Chang, J. -S. 2015. Exploring the potential of using algae in cosmetics. Bioresour. Technol. 184:355-362.   DOI
41 Werck-Reichhart, D., Bak, S. & Paquette, S. 2002. Cytochrome P450. Arabidopsis Book 1:e0028.   DOI
42 Zhang, F., Rodriguez, S. & Keasling, J. D. 2011. Metabolic engineering of microbial pathways for advanced biofuels production. Curr. Opin. Biotechnol. 22:775-783.   DOI