Browse > Article
http://dx.doi.org/10.4490/algae.2015.30.3.223

Niche partitioning of picocyanobacterial lineages in the oligotrophic northwestern Pacific Ocean  

Choi, Dong Han (Biological Oceanography & Marine Biology Division, Korea Institute of Ocean Science and Technology)
Selph, Karen E. (Department of Oceanography, University of Hawaii)
Noh, Jae Hoon (Biological Oceanography & Marine Biology Division, Korea Institute of Ocean Science and Technology)
Publication Information
ALGAE / v.30, no.3, 2015 , pp. 223-232 More about this Journal
Abstract
More than 20 and 10 clades / ecotypes of Synechococcus and Prochlorococcus, respectively, have been identified in various oceanic regions. However, their diversity has yet to be thoroughly studied in the northwest Pacific Ocean. Further, spatial distribution of Synechococcus clades in the oligotrophic oceans has been scarcely characterized. To elucidate picocyanobacterial lineage distribution in the northwest Pacific Ocean, 16S-23S internal transcribed spacer sequences of picocyanobacteria were sequenced by barcoded amplicon pyrosequencing method. Additional pyrosequencing library using a primer specific for the Synechococcus subcluster-5.1 was constructed to thoroughly understand Synechococcus diversity in the oligotrophic oceans. In warm pool area, Prochlorococcus was predominant and showed a distinct depthpartitioning between HLII and LL ecotypes. Despite low abundances, diverse Synechococcus clades appeared in the oligotrophic open ocean, showing both vertical and horizontal niche partitioning. Clade II was the predominant Synechococcus clade, especially in upper euphotic depths. In shallow and middle euphotic depths, clades UC-A, III, and CRD1 were distributed broadly. However, a distinct shift in the horizontal distribution was found at ca. $20^{\circ}N$. Conversely, clades XVII and CRD2 dominated at deep euphotic depths and constituted a higher proportion than clade II. These niche-partitioning of Synechococcus clades seemed to be related with temperature, nutrient concentration as well as iron concentration.
Keywords
diversity; ecotype; NW Pacific Ocean; Prochlorococcus; pyrosequencing; Synechococcus;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zwirglmaier, K., Heywood, J. L., Chamberlain, K., Woodward, E. M. S., Zubkov, M. V. & Scanlan, D. J. 2007. Basin-scale distribution patterns of picocyanobacterial lineages in the Atlantic Ocean. Environ. Microbiol. 9:1278-1290.   DOI
2 Zwirglmaier, K., Jardillier, L., Ostrowski, M., Mazard, S., Garczarek, L., Vaulot, D., Not, F., Massana, R., Ulloa, O. & Scanlan, D. J. 2008. Global phylogeography of marine Synechococcus and Prochlorococcus reveals a distinct partitioning of lineages among oceanic biomes. Environ. Microbiol. 10:147-161.
3 Ahlgren, N. A. & Rocap, G. 2006. Culture isolation and culture-independent clone libraries reveal new marine Synechococcus ecotypes with distinctive light and N physiologies. Appl. Environ. Microbiol. 72:7193-7204.   DOI
4 Ahlgren, N. A., Rocap, G. & Chisholm, S. W. 2006. Measurement of Prochlorococcus ecotypes using real-time polymerase chain reaction reveals different abundances of genotypes with similar light physiologies. Environ. Microbiol. 8:441-454.   DOI
5 Apple, J. K., Strom, S. L., Palenik, B. & Brahamsha, B. 2011. Variability in protist grazing and growth on different marine Synechococcus isolates. Appl. Environ. Microbiol. 77:3074-3084.   DOI
6 Belkin, I. M. 2009. Rapid warming of large marine ecosystems. Prog. Oceanogr. 81:207-213.   DOI
7 Campbell, L. & Vaulot, D. 1993. Photosynthetic picoplankton community structure in the subtropical North Pacific Ocean near Hawaii (Station Aloha). Deep-Sea Res. Part I Oceanogr. Res. Pap. 40:2043-2060.   DOI
8 Chen, F., Wang, K., Kan, J., Suzuki, M. T. & Wommack, K. E. 2006. Diverse and unique picocyanobacteria in Chesapeake Bay, revealed by 16S-23S rRNA internal transcribed spacer sequences. Appl. Environ. Microbiol. 72:2239-2243.   DOI
9 Choi, D. H. & Noh, J. H. 2009. Phylogenetic diversity of Synechococcus strains isolated from the East China Sea and the East Sea. FEMS Microbiol. Ecol. 69:439-448.   DOI
10 Choi, D. H., Noh, J. H. & Lee, J. -H. 2014. Application of pyrosequencing method for investigating the diversity of Synechococcus subcluster 5.1 in open ocean. Microbes Environ. 29:17-22.   DOI
11 Choi, D. H., Noh, J. H. & Shim, J. 2013. Seasonal changes in picocyanobacterial diversity as revealed by pyrosequencing in temperate waters of the East China Sea and the East Sea. Aquat. Microb. Ecol. 71:75-90.   DOI
12 Choi, D. H., Park, K. -T., An, S. M., Lee, K., Cho, J. C., Lee, J. H., Kim, D., Jeon, D. & Noh, J. H. 2015. Pyrosequencing revealed SAR116 clade as dominant dddP-containing bacteria in oligotrophic NW Pacific Ocean. PLoS One 10:e0116271.   DOI
13 Chung, C. -C., Huang, C. -Y., Gong, G. -C. & Lin, Y. -C. 2014. Influence of the Changjiang River flood on Synechococcus ecology in the surface waters of the East China Sea. Microb. Ecol. 67:273-285.   DOI
14 Collins, M., An, S. -I., Cai, W., Ganachaud, A., Guilyardi, E., Jin, F. -F., Jochum, M., Lengaigne, M., Power, S., Timmermann, A., Vecchi, G. & Wittenberg, A. 2010. The impact of global warming on the tropical Pacific Ocean and El Nino. Nat. Geosci. 3:391-397.   DOI
15 Dufresne, A., Ostrowski, M., Scanlan, D. J., Garczarek, L., Mazard, S., Palenik, B. P., Paulsen, I. T., de Marsa, N. T., Wincker, P., Dossat, C., Ferriera, S., Johnson, J., Post, A. F., Hess, W. R. & Partensky, F. 2008. Unraveling the genomic mosaic of a ubiquitous genus of marine cyanobacteria. Genome Biol. 9:R90.   DOI
16 Fuller, N. J., Marie, D., Partensky, F., Vaulot, D., Post, A. F. & Scanlan, D. J. 2003. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl. Environ. Microbiol. 69:2430-2443.   DOI
17 Johnson, Z. I., Zinser, E. R., Coe, A., McNulty, N. P., Woodward, E. M. S. & Chisholm, S. W. 2006. Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311:1737-1740.   DOI
18 Fuller, N. J., Tarran, G. A., Yallop, M., Orcutt, K. M. & Scanlan, D. J. 2006. Molecular analysis of picocyanobacterial community structure along an Arabian Sea transect reveals distinct spatial separation of lineages. Limnol. Oceanogr. 51:2515-2526.   DOI
19 Huang, S., Wilhelm, S. W., Harvey, H. R., Taylor, K., Jiao, N. & Chen, F. 2012. Novel lineages of Prochlorococcus and Synechococcus in the global oceans. ISME J. 6:285-297.   DOI
20 Ichikawa, H. & Beardsley, R. C. 2002. The current system in the Yellow and East China Seas. J. Oceanogr. 58:77-92.   DOI
21 Lavin, P., Gonzalez, B., Santibanez, J. F., Scanlan, D. J. & Ulloa, O. 2010. Novel lineages of Prochlorococcus thrive within the oxygen minimum zone of the eastern tropical South Pacific. Environ. Microbiol. Rep. 2:728-738.   DOI
22 Li, W. K. W. 1994. Primary production of prochlorophytes, cyanobacteria, and eucaryotic ultraphytoplankton: measurements from flow cytometric sorting. Limnol. Oceanogr. 39:169-175.   DOI
23 Liu, H., Nolla, H. A. & Campbell, L. 1997. Prochlorococcus growth rate and contribution to primary production in the equatorial and subtropical North Pacific Ocean. Aquat. Microb. Ecol. 12:39-47.   DOI   ScienceOn
24 Mann, E. L., Ahlgren, N., Moffett, J. W. & Chisholm, S. W. 2002. Copper toxicity and cyanobacteria ecology in the Sargasso Sea. Limnol. Oceanogr. 47:976-988.   DOI
25 Mann, N. H. 2003. Phages of the marine cyanobacterial picophytoplankton. FEMS Microbiol. Rev. 27:17-34.   DOI
26 Mella-Flores, D., Mazard, S., Humily, F., Partensky, F., Mahe, F., Bariat, L., Courties, C., Marie, D., Ras, J., Mauriac, R., Jeanthon, C., Bendif, E. M., Ostrowski, M., Scanlan, D. J. & Garezarek, L. 2011. Is the distribution of Prochlorococcus and Synechococcus ecotypes in the Mediterranean Sea affected by global warming? Biogeosciences 8:2785-2804.   DOI
27 Maranon, E., Holligan, P. M., Barciela, R., Gonzalez, N., Mourino, B., Pazo, M. J. & Varela, M. 2001. Patterns of phytoplankton size structure and productivity in contrasting open-ocean environments. Mar. Ecol. Prog. Ser. 216:43-56.   DOI
28 Martiny, A. C., Tai, A. P. K., Veneziano, D., Primeau, F. & Chisholm, S. W. 2009. Taxonomic resolution, ecotypes and the biogeography of Prochlorococcus. Environ. Microbiol. 11:823-832.   DOI
29 McClain, C. R., Murtugudde, R. & Signorini, S. 1999. A simulation of biological processes in the equatorial Pacific Warm Pool at $165^{\circ}E$. J. Geophys. Res. Oceans 104:18305-18322.   DOI
30 Moore, J. K., Doney, S. C., Glover, D. M. & Fung, I. Y. 2002. Iron cycling and nutrient-limitation patterns in surface waters of the World Ocean. Deep-Sea Res. Part II Top. Stud. Oceanogr. 49:463-507.
31 Moore, L. R., Rocap, G. & Chisholm, S. W. 1998. Physiology and molecular phylogeny of coexisting Prochlorococcus ecotypes. Nature 393:464-467.   DOI
32 Muhling, M., Fuller, N. J., Millard, A., Somerfield, P. J., Marie, D., Wilson, W. H., Scanlan, D. J., Post, A. F., Joint, I. & Mann, N. H. 2005. Genetic diversity of marine Synechococcus and co-occurring cyanophage communities: evidence for viral control of phytoplankton. Environ. Microbiol. 7:499-508.   DOI
33 Partensky, F., Hess, W. R. & Vaulot, D. 1999. Prochlorococcus, a marine photosynthetic prokaryote of global significance. Microbiol. Mol. Biol. Rev. 63:106-127.
34 Rusch, D. B., Martiny, A. C., Dupont, C. L., Halpern, A. L. & Venter, J. C. 2010. Characterization of Prochlorococcus clades from iron-depleted oceanic regions. Proc. Natl. Acad. Sci. U. S. A. 107:16184-16189.   DOI
35 Penno, S., Lindell, D. & Post, A. F. 2006. Diversity of Synechococcus and Prochlorococcus populations determined from DNA sequences of the N-regulatory gene ntcA. Environ. Microbiol. 8:1200-1211.   DOI
36 Post, A. F., Penno, S., Zandbank, K., Paytan, A., Huse, S. M. & Welch, D. M. 2011. Long term seasonal dynamics of Synechococcus population structure in the Gulf of Aqaba, Northern Red Sea. Front. Microbiol. 2:131.
37 Rocap, G., Distel, D. L., Waterbury, J. B. & Chisholm, S. W. 2002. Resolution of Prochlorococcus and Synechococcus ecotypes by using 16S-23S ribosomal DNA internal transcribed spacer sequences. Appl. Environ. Microbiol. 68:1180-1191.   DOI
38 Saito, M. A., Rocap, G. & Moffett, J. W. 2005. Production of cobalt binding ligands in a Synechococcus feature at the Costa Rica upwelling dome. Limnol. Oceanogr. 50:279-290.   DOI
39 Scanlan, D. J., Ostrowski, M., Mazard, S., Dufresne, A., Garczarek, L., Hess, W. R., Post, A. F., Hagemann, M., Paulsen, I. & Partensky, F. 2009. Ecological genomics of marine picocyanobacteria. Microbiol. Mol. Biol. Rev. 73:249-299.   DOI
40 Schloss, P. D., Westcott, S. L., Ryabin, T., Hall, J. R., Hartmann, M., Hollister, E. B., Lesniewski, R. A., Oakley, B. B., Parks, D. H., Robinson, C. J., Sahl, J. W., Stres, B., Thallinger, G. G., Van Horn, D. J. & Weber, C. F. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537-7541.   DOI
41 Twining, B. S., Nunez-Milland, D., Vogt, S., Johnson, R. S. & Sedwick, P. N. 2010. Variations in Synechococcus cell quotas of phosphorus, sulfur, manganese, iron, nickel, and zinc within mesoscale eddies in the Sargasso Sea. Limnol. Oceanogr. 55:492-506.   DOI
42 Sohm, J. A., Ahlgren, N. A., Thomson, Z. J., Williams, C., Moffett, J. W., Saito, M. A., Webb, E. A. & Rocap, G. 2015. Co-occurring Synechococcus ecotypes occupy four major oceanic regimes defined by temperature, macronutrients and iron. ISME J. Advanced online publication. http://dx.doi.org/10.1038/ismej.2015.115.
43 Tai, V. & Palenik, B. 2009. Temporal variation of Synechococcus clades at a coastal Pacific Ocean monitoring site. ISME J. 3:903-915.   DOI
44 Teira, E., Mourino, B., Maranon, E., Perez, V., Pazo, M. J., Serret, P., de Armas, D., Escanez, J., Woodward, E. M. S. & Fernandez, E. 2005. Variability of chlorophyll and primary production in the Eastern North Atlantic Subtropical Gyre: potential factors affecting phytoplankton activity. Deep-Sea Res. Part I Oceanogr. Res. Pap. 52:569-588.   DOI
45 West, N. J., Lebaron, P., Strutton, P. G. & Suzuki, M. T. 2011. A novel clade of Prochlorococcus found in high nutrient low chlorophyll waters in the South and Equatorial Pacific Ocean. ISME J. 5:933-944.   DOI
46 West, N. J. & Scanlan, D. J. 1999. Niche-partitioning of Prochlorococcus populations in a stratified water column in the eastern North Atlantic Ocean. Appl. Environ. Microbiol. 65:2585-2591.
47 Zinser, E. R., Coe, A., Johnson, Z. I., Martiny, A. C., Fuller, N. J., Scanlan, D. J. & Chisholm, S. W. 2006. Prochlorococcus ecotype abundances in the North Atlantic Ocean as revealed by an improved quantitative PCR method. Appl. Environ. Microbiol. 72:723-732.   DOI