Browse > Article
http://dx.doi.org/10.4490/algae.2015.30.2.163

Cellular activities and docking studies of eckol isolated from Ecklonia cava (Laminariales, Phaeophyceae) as potential tyrosinase inhibitor  

Lee, Seung-Hong (Division of Food Bioscience and Korea Nokyong Research Center, Konkuk University)
Kang, Sung-Myung (Department of Anatomy and Cell Biology, University of Calgary, Faculty of Medicine)
Sok, Chang Hyun (College of Pharmacy, Chungbuk National University)
Hong, Jin Tae (College of Pharmacy, Chungbuk National University)
Oh, Jae-Young (Department of Marine Life Science, Jeju National University)
Jeon, You-Jin (Department of Marine Life Science, Jeju National University)
Publication Information
ALGAE / v.30, no.2, 2015 , pp. 163-170 More about this Journal
Abstract
Tyrosinase inhibitors are an important component of cosmetic products. Our previous studies have proposed that eckol isolated from the brown alga Ecklonia cava, can be explored as a tyrosinase inhibitor. However, cellular activities and mechanism of action of eckol remain unknown. Therefore, the current study analyzed the eckol binding modes using the crystal structure of Bacillus megaterium tyrosinase. The effects of eckol on melanin synthesis induced by ${\alpha}$-melanocyte stimulating hormone in B16F10 melanoma cells were also investigated. We predicted the 3D structure of tyrosinase and used a docking algorithm to simulate binding between tyrosinase and eckol. These molecular modeling studies were successful (calculated binding energy value, $-115.84kcal\;mol^{-1}$) and indicated that eckol interacts with Asn205, His208, and Arg209. Furthermore, eckol markedly inhibited tyrosinase activity and melanin synthesis in B16F10 melanoma cells. We also found that eckol decreased the expression of tyrosinase, tyrosinase-related protein (TRP) 1, and TRP2. These results indicate that eckol is a potent inhibitor of melanogenesis, and this finding may be useful for the development of novel pharmaceutical and cosmetic agents.
Keywords
B16F10 melanoma cells; eckol; melanin synthesis; molecular docking; tyrosinase;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ahn, G. -N., Kim, K. -N., Cha, S. -H., Song, C. -B., Lee, J., Heo, M. -S., Yeo, I. -K., Lee, N. -H., Jee, Y. -H., Kim, J. -S., Heu, M. -S. & Jeon, Y. -J. 2007. Antioxidant activities of phlorotannins purified from Ecklonia cava on free radical scavenging using ESR and $H_2O_2$-mediated DNA damage. Eur. Food Res. Technol. 226:71-79.   DOI
2 Arung, E. T., Furuta, S., Ishikawa, H., Kusuma, I. W., Shimizu, K. & Kondo, R. 2011. Anti-melanogenesis properties of quercetin- and its derivative-rich extract from Allium cepa. Food Chem.124:1024-1028.   DOI
3 Battaini, G., Monzani, E., Casella, L., Santagostini, L. & Pagliarin, R. 2000. Inhibition of the catecholase activity of biomimetic dinuclear copper complexes by kojic acid. J. Biol. Inorg. Chem. 5:262-268.   DOI
4 Bilodeau, M. L., Greulich, J. D., Hullinger, R. L., Bertolotto, C., Ballotti, R. & Andrisani, O. M. 2001. BMP-2 stimulates tyrosinase gene expression and melanogenesis in differented melanocytes. Pigment Cell Res. 14:328-336.   DOI
5 Briganti, S., Camera, E. & Picardo, M. 2003. Chemical and instrumental approaches to treat hyperpigmentation. Pigment Cell Res. 16:101-110.   DOI
6 Chakraborty, A. K. & Chakraborty, D. P. 1993. The effect of tryptophan on dopa-oxidation by melanosomal tyrosinase. Int. J. Biochem. 25:1277-1280.   DOI
7 Chan, Y. Y., Kim, K. H. & Cheah, S. H. 2011. Inhibitory effects of Sargassum polycystum on tyrosinase activity and melanin formation in B16F10 murine melanoma cells. J. Ethnopharmacol. 137:1183-1188.   DOI
8 Chen, Q. -X. & Kubo, I. 2002. Kinetics of mushroom tyrosinase inhibition by quercetin. J. Agric. Food Chem. 50:4108-4112.   DOI
9 Cooksey, C. J., Garratee, P. J., Land, E. J., Pavel, S., Ramsden, C. A., Riley, P. A. & Smit, N. P. M. 1997. Evidence of the indirect formation of the catecholic intermediate substrate responsible for the autoactivation kinetics of tyrosinase. J. Biol. Chem. 272:26226-26235.   DOI
10 Fenoll, L. G., Rodriguez-Lopez, J. N., Varon, R., Garcia-Ruiz, P. A., Garcia-Canovas, F. & Tudela, J. 2000. Action mechanism of tyrosinase on meta- and para-hydroxylated monophenols. Biol. Chem. 381:313-320.
11 Fradera, X., Knegtel, R. M. A. & Mestres, J. 2000. Similaritydriven flexible ligand docking. Proteins 40:623-636.   DOI
12 Gopalakrishnan, B., Aparna, V., Jeevan, J., Ravi, M. & Desiraju, G. R. 2005. A virtual screening approach for thymidine monophosphaste kinase inhibitors as antitubercular agents based on docking and pharmacophore models. J. Chem. Inf. Model. 45:1101-1108.   DOI
13 Heo, S. -J., Ko, S. -C., Cha, S. -H., Kang, D. -H., Park, H. -S., Choi, Y. -U., Kim, D., Jung, W. -K. & Jeon, Y. -J. 2009. Effect of phlorotannins isolated from Ecklonia cava on mlanogenesis and their protective effect against photooxidative stress induced by UV-B radiation. Toxicol. In Vitro 23:1123-1130.   DOI
14 Joe, M. -J., Kim, S. -N., Choi, H. -Y., Shin, W. -S., Park, G. -M., Kang, D. -W. & Kim, Y. K. 2006. The inhibitiory effects of eckol and dieckol from Ecklonia stolonifera on the expression of matrix metalloproteinase-1 in human dermal fibroblasts. Biol. Pharm. Bull. 29:1735-1739.   DOI
15 Jun, Y. -J., Lee, M., Shin, T., Yoon, N., Kim, J. -H. & Kim, H. -R. 2014. Eckol enhances hemo oxigenase-1 expression through activation of Nrf2/JNK pathway in HepG2 cells. Molecules 19:15638-15652.   DOI
16 Kang, S. -M., Heo, S. -J., Kim, K. -N., Lee, S. -H., Yang, H. -M., Kim, A. -D. & Jeon, Y. -J. 2012. Molecular docking studies of a phlorotannin, dieckol isolated from Ecklonia cava with tyrosinase inhibitory activity. Bioorg. Med. Chem. 20:311-316.   DOI   ScienceOn
17 Kameyama, K., Sakai, C., Kuge, S., Nishiyama, S., Tomita, Y., Ito, S., Wakamatsu, K. & Hearing, V. J. 1995. The expression of tyrosinase, tyrosinase-related proteins 1 and 2 (TRP1 and TRP2), the silver protein, and a melanogenic inhibitor in human melanoma cells of differing melanogenic activities. Pigment Cell Res. 8:97-104.   DOI
18 Kang, K. A., Lee, K. H., Chae, S., Koh, Y. S., Yoo, B. -S., Kim, J. H., Ham, Y. M., Baik, J. S., Lee, N. H. & Hyun, J. W. 2005a. Triphlorethol-A from Ecklonia cava protects V79-4 lung fibroblast against hydrogen peroxide induced cell damage. Free Radic. Res. 39:883-892.   DOI
19 Kang, K. A., Lee, K. H., Chae, S., Zhang, R., Jung, M. S., Lee, Y., Kim, S. Y., Kim, H. S., Joo, H. G., Park, J. W., Ham, Y. M., Lee, N. H. & Hyun, J. W. 2005b. Eckol isolated from Ecklonia cava attenuates oxidative stress induced cell damage in lung fibroblast cells. FEBS Lett. 579:6295-6304.   DOI
20 Kim, A. D., Kang, K. A., Piao, M. J., Kim, K. C., Zheng, J., Yao, C. W., Cha, J. W., Hyun, C. L., Kang, H. K., Lee, N. H. & Hyun, J. W. 2014. Cytoprotective effect of eckol against oxidative stress-induced mitochondrial dysfunction: involvement of the FoxO3a/AMPK pathway. J. Cell Biochem. 115:1403-1411.   DOI
21 Kim, D. -S., Kim, S. -Y., Chung, J. -H., Kim, K. -H., Eun, H. -C. & Park, K. -C. 2002. Delayed ERK activation by ceramide reduces melanin synthesis in human melanocytes. Cell. Signal. 14:779-785.   DOI
22 Le, Q. -T., Li, Y., Qian, Z. -J., Kim, M. -M. & Kim, S. -K. 2009. Inhibitory effects of polyphenols isolated from marine alga Ecklonia cava on histamine release. Process Biochem. 44:168-176.   DOI
23 Nofsinger, J. B., Liu, Y. & Simon, J. D. 2002. Aggregation of eumelanin mitigates photogeneration of reactive oxygen species. Free Radic. Biol. Med. 32:720-730.   DOI
24 Maeda, K. & Fukuda, M. 1996. Arbutin: mechanism of its depigmenting action in human melanomacyte culture. J. Pharmacol. Exp. Ther. 276:765-769.
25 Maeda, K., Yokokawa, Y., Hatao, M., Naganuma, M. & Tomita, Y. 1997. Comparison of the melanogenesis in human black and light brown melanocytes. J. Dermatol. Sci. 14:199-206.   DOI
26 Mallavadhani, U. V., Panada, A. K. & Rao, Y. R. 1998. Pharmacology and chemotaxonomy of Diospyros. Phytochemistry 49:901-951.   DOI
27 Park, E., Ahn, G., Lee, N. H., Kim, J. M., Yun, J. S., Hyun, J. W., Jeon, Y. J., Wie, M. B., Lee, Y. J., Park, J. W. & Jee, Y. 2008. Radioprotective properties of eckol against ionizing radiation in mice. FEBS Lett. 582:925-930.   DOI   ScienceOn
28 Park, K. -T., Kim, J. -K., Hwang, D., Yoo, Y. & Lim, Y. -H. 2011. Inhibitory effect of mulberroside A and its derivatives on melanogenesis induced by ultraviolet B irradiation. Food Chem. Toxicol. 49:3038-3045.   DOI
29 Parvez, S., Kang, M., Chung, H. -S. & Bae, H. 2007. Naturally occurring tyrosinase inhibitors: mechanism and applications in skin health, cosmetics and agriculture industries. Phytother. Res. 21:805-816.   DOI
30 Perola, E. 2006. Minimizing false positives in kinase virtual screens. Proteins 64:422-435.   DOI
31 Prezioso, J. A., Epperly, M. W., Wang, N. & Bloomer, W. D. 1992. Effects of tyrosinase activity on the cytotoxicity of 4-S-cysteaminylphenol and N-acetyl-4-S-cysteaminylphenol in melanoma cells. Cancer Lett. 63:73-79.   DOI
32 Solano, F., Briganti, S., Picardo, M. & Ghanem, G. 2006. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res. 19:550-571.   DOI
33 Sirat, H. M., Rezali, M. F. & Ujang, Z. 2010. Isolation and identification of radical scavenging and tyrosinase inhibition of polyphenols from Tibouchina semidecandra L. J. Agric. Food Chem. 58:10404-10409.   DOI