Browse > Article
http://dx.doi.org/10.4490/algae.2015.30.2.121

Evaluation of carbon flux in vegetative bay based on ecosystem production and CO2 exchange driven by coastal autotrophs  

Kim, Ju-Hyoung (Faculty of Marine Applied Biosciences, Kunsan National University)
Kang, Eun Ju (Department of Oceanography, College of Natural Sciences Chonnam National University)
Kim, Keunyong (Department of Oceanography, College of Natural Sciences Chonnam National University)
Jeong, Hae Jin (School of Earth and Environmental Sciences, College of Natural Sciences, Seoul National University)
Lee, Kitack (School of Environmental Science and Engineering, Pohang University of Science and Technology)
Edwards, Matthew S. (Department of Biology, San Diego State University)
Park, Myung Gil (Department of Oceanography, College of Natural Sciences Chonnam National University)
Lee, Byeong-Gweon (Department of Oceanography, College of Natural Sciences Chonnam National University)
Kim, Kwang Young (Department of Oceanography, College of Natural Sciences Chonnam National University)
Publication Information
ALGAE / v.30, no.2, 2015 , pp. 121-137 More about this Journal
Abstract
Studies on carbon flux in the oceans have been highlighted in recent years due to increasing awareness about climate change, but the coastal ecosystem remains one of the unexplored fields in this regard. In this study, the dynamics of carbon flux in a vegetative coastal ecosystem were examined by an evaluation of net and gross ecosystem production (NEP and GEP) and $CO_2$ exchange rates (net ecosystem exchange, NEE). To estimate NEP and GEP, community production and respiration were measured along different habitat types (eelgrass and macroalgal beds, shallow and deep sedimentary, and deep rocky shore) at Gwangyang Bay, Korea from 20 June to 20 July 2007. Vegetative areas showed significantly higher ecosystem production than the other habitat types. Specifically, eelgrass beds had the highest daily GEP ($6.97{\pm}0.02g\;C\;m^{-2}\;d^{-1}$), with a large amount of biomass and high productivity of eelgrass, whereas the outer macroalgal vegetation had the lowest GEP ($0.97{\pm}0.04g\;C\;m^{-2}\;d^{-1}$). In addition, macroalgal vegetation showed the highest daily NEP ($3.31{\pm}0.45g\;C\;m^{-2}\;d^{-1}$) due to its highest P : R ratio (2.33). Furthermore, the eelgrass beds acted as a $CO_2$ sink through the air-seawater interface according to NEE data, with a carbon sink rate of $0.63mg\;C\;m^{-2}\;d^{-1}$. Overall, ecosystem production was found to be extremely high in the vegetated systems (eelgrass and macroalgal beds), which occupy a relatively small area compared to the unvegetated systems according to our conceptual diagram of a carbon-flux box model. These results indicate that the vegetative ecosystems showed significantly high capturing efficiency of inorganic carbon through coastal primary production.
Keywords
$CO_2$ flux; ecosystem production; eelgrass beds; Gwangyang Bay; macroalgal vegetation; microphytobenthos; phytoplankton; unvegetated sediment;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Barron, C., Marba, N., Duarte, C. M., Pedersen, M. F., Lindblad, C., Kersting, K., Moy, F. & Bokn, T. 2003. High organic carbon export precludes eutrophication responses in experimental rocky shore communities. Ecosystems 6:144-153.   DOI
2 Bates, N. R., Hansell, D. A., Carlson, C. A. & Gordon, L. I. 1998. Distribution of $CO_2$ species, estimates of net community production, and air-sea $CO_2$ exchange in the Ross Sea polynya. J. Geophys. Res. 103:2883-2896.   DOI
3 Borges, A. V., Delille, B. & Frankignoulle, M. 2005. Budgeting sinks and sources of $CO_2$ in the coastal ocean: diversity of ecosystems counts. Geophys. Res. Lett. 32:L14601.
4 Chen, C. -T. A. & Borges, A. V. 2009. Reconciling opposing views on carbon cycling in the coastal ocean: continental shelves as sinks and near-shore ecosystems as sources of atmospheric $CO_2$. Deep-Sea Res. Part II Top. Stud. Oceanogr. 56:578-590.   DOI
5 Ciais, P., Sabine, C., Govindasamy, B., Bopp, L., Brovkin, V., Canadell, J., Chhabra, A., DeFries, R., Galloway, J., Heimann, M., Jones, C., Le Quere, C., Myneni, R., Piao, S. & Thornton, P. 2013. Carbon and other biogeochemical cycles. In Stocker, T., Qin, D. & Platner, G. -K. (Eds.) Climate Change 2013: The Physical Science Basis. Cambridge University Press, Cambridge, pp. 1-167.
6 Dickson, A. G., Sabine, C. L. & Christian, J. R. 2007. Guide to best practices for ocean $CO_2$ measurement. PICES Spec. Publ. 3:1-191.
7 Duarte, C. M. & Agusti, S. 1998. The $CO_2$ balance of unproductive aquatic ecosystems. Science 281:234-236.   DOI
8 Duarte, C. M., Middelburg, J. J. & Caraco, N. 2005. Major role of marine vegetation on the oceanic carbon cycle. Biogeosciences 2:1-8.
9 Fourqurean, J. W., Duarte, C. M., Kennedy, H., Marba, N., Holmer, M., Mateo, M. A., Apostolaki, E. T., Kendrick, G. A., Krause-Jensen, D., McGlathery, K. J. & Serrano, O. 2012. Seagrass ecosystems as a globally significant carbon stock. Nat. Geosci. 5:505-509.   DOI
10 Frankignoulle, M. & Bouquegneau, J. M. 1987. Seasonal variation of the diel carbon budget of a marine macrophyte ecosystem. Mar. Ecol. Prog. Ser. 38:197-199.   DOI
11 Giusti, E. & Marsili-Libelli, S. 2005. Modelling the interactions between nutrients and the submersed vegetation in the Orbetello Largoon. Ecol. Model. 184:141-161.   DOI
12 Gomez, I., Orostegui, M. & Huovinen, P. 2007. Morpho-functional patterns of photosynthesis in the south Pacific kelp Lessonia nigrescens: effects of UV radiation on ${14}_C$ fixation and primary photochemical reactions. J. Phycol. 43:55-64.   DOI
13 Jahne, B., Heinz, G. & Dietrich, W. 1987. Measurement of the diffusion coefficients of sparingly soluble gases in water. J. Geophys. Res. 92:10767-10776.   DOI
14 Jorgensen, B. B. & Revsbech, N. P. 1985. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnol. Oceanogr. 30:111-122.   DOI
15 Kaldy, J. E., Onuf, C. P., Eldridge, P. M. & Cifuentes, L. A. 2002. Carbon budget for a subtropical seagrass dominated coastal lagoon: how important are seagrasses to total ecosystem net primary production? Estuaries 25:528-539.   DOI
16 Kim, J. -H., Kim, K. Y., Kang, E. J., Lee, K., Kim, J. -M., Park, K. -T., Shin, K., Hyun, B. & Jeong, H. -J. 2013a. Enhancement of photosynthetic carbon assimilation efficiency by phytoplankton in the future coastal ocean. Biogeosciences 10:7525-7535.   DOI
17 Kim, K. Y., Choi, T. -S., Huh, S. H. & Garbary, D. J. 1998. Seasonality and community structure of subtidal benthic algae from Daedo Island, Southern Korea. Bot. Mar. 41:357-365.
18 Kim, J. -H., Lam, S. M. N. & Kim, K. Y. 2013b. Photoacclimation strategies of the temperate coralline alga Corallina officinalis: a perspective on photosynthesis, calcification, photosynthetic pigment contents and growth. Algae 28:355-363.   DOI
19 Kim, K., Kim, J. -H. & Kim, K. Y. 2008. Using a digital echosounder to estimate eelgrass (Zostera marina L.) cover and biomass in Kwangyang Bay. Algae 23:83-90.   DOI
20 Kim, K. Y. & Choi, T. S. 2004. Variability in abundance and morphological attributes of Zostera marina L. from the southern coast of Korea. Bot. Mar. 47:287-294.
21 Kuhl, M., Glud, R. N., Ploug, H. & Ramsing, N. B. 1996. Microenvironmental control of photosynthesis and photosynthesis-coupled respiration in an epilithic cyanobacterial biofilm. J. Phycol. 32:799-812.   DOI
22 Laruelle, G. G., Dürr, H. H., Slomp, C. P. & Borges, A. V. 2010. Evaluation of sinks and sources of $CO_2$ in the global coastal ocean using a spatially-explicit typology of estuaries and continental shelves. Geophys. Res. Lett. 37:L15607.
23 Lee, K., Millero, F. J., Byrne, R. H., Feely, R. A. & Wanninkhof, R. 2000. The recommended dissociation constants for carbonic acid in seawater. Geophys. Res. Lett. 27:229-232.   DOI
24 Lee, K., Millero, F. J. & Campbell, D. M. 1996. The reliability of the thermodynamic constants for the dissociation of carbonic acid in seawater. Mar. Chem. 55:233-245.   DOI
25 Lovett, G. M., Cole, J. J. & Pace, M. L. 2006. Is net ecosystem production equal to ecosystem carbon accumulation? Ecosystems 9:1-4.   DOI
26 Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicz, R. M. 1973. Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18:897-907.   DOI
27 Madsen, J. D., Chambers, P. A., James, W. F., Koch, E. W. & Westlake, D. F. 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444:71-84.   DOI
28 Mateo, M. A., Renom, P., Hemminga, M. A. & Peene, J. 2001. Measurement of seagrass production using the $^{13}C$ stable isotope compared with classical $O_2$ and $^{14}C$ methods. Mar. Ecol. Prog. Ser. 223:157-165.   DOI
29 Mcleod, E., Chmura, G. L., Bouillon, S., Salm, R., Bjork, M., Duarte, C. M., Lovelock, C. E., Schlesinger, W. H. & Silliman, B. R. 2011. A blueprint for blue carbon: toward an improved understanding of the role of vegetated coastal habitats in sequestering $CO_2$. Front. Ecol. Environ. 9:552-560.   DOI
30 Millero, F. J., Graham, T. B., Huang, F., Bustos-Serrano, H. & Pierrot, D. 2006. Dissociation constants of carbonic acid in seawater as a function of salinity and temperature. Mar. Chem. 100:80-94.   DOI
31 Millero, F. J., Pierrot, D., Lee, K., Wanninkhof, R., Feely, R., Sabine, C. L., Key, R. M. & Takahashi, T. 2002. Dissociation constants for carbonic acid determined from field measurements. Deep Sea Res. Part I Oceanogr. Res. Pap. 49:1705-1723.   DOI
32 Penhale, P. A. 1977. Macrophyte-epiphyte biomass and productivity in an eelgrass (Zostera marina L.) community. J. Exp. Mar. Biol. Ecol. 26:221-224.
33 Platt, T., Gallegos, C. L. & Harrison, W. G. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 38:687-701.
34 Sarma, V. V. S. S. 2003. Monthly variability in surface $pCO_2$ and net air-sea $CO_2$ flux in the Arabian Sea. J. Geophys. Res. 108:3255.   DOI
35 Pradeep Ram, A. S., Nair, S. & Chandramohan, D. 2003. Seasonal shift in net ecosystem production in a tropical estuary. Limnol. Oceanogr. 48:1601-1607.   DOI
36 Randerson, J. T., Chapin III, F. S., Harden, J. W., Neff, J. C. & Harmon, M. E. 2002. Net ecosystem production: a comprehensive measure of net carbon accumulation by ecosystems. Ecol. Appl. 12:937-947.   DOI
37 Sabine, C. L., Feely, R. A., Gruber, N., Key, R. M., Lee, K., Bullister, J. L., Wanninkhof, R., Wong, C. S., Wallace, D. W. R., Tilbrook, B., Millero, F. J., Peng, T. -H., Kozyr, A., Ono, T. & Rios, A. F. 2004. The oceanic sink for anthropogenic $CO_2$. Sciences 305:367-371.   DOI   ScienceOn
38 Strickland, J. D. H. & Parsons, T. R. 1972. A practical handbook of seawater analysis. 2nd ed. Bulletin No. 167. Fisheries Research Board of Canada, Ottawa, 310 pp.
39 Taylor, C. D. 1999. Procedures for the measurement of primary production in Massachusetts Bay. Report ENQUAD 99-07. Massachusetts Water Resources Authority, Boston, MA, 24 pp.
40 Tokoro, T., Hosokawa, S., Miyoshi, E., Tada, K., Watanabe, K., Montani, S., Kayanne, H. & Kuwae, T. 2014. Net uptake of atmospheric $CO_2$ by coastal submerged aquatic vegetation. Glob. Chang. Biol. 20:1873-1884.   DOI
41 Tsunogai, S., Watanabe, S. & Sato, T. 1999. Is there a "continental shelf pump" for the absorption of atmospheric $CO_2$? Tellus B 51:701-712.   DOI
42 Williams, P. J. B. 1998. The balance of plankton respiration and photosynthesis in the open oceans. Nature 394:55-57.   DOI
43 Ver, L. M. B., Mackenzie, F. T. & Lerman, A. 1999. Carbon cycle in the coastal zone: effects of global perturbations and change in the past three centuries. Chem. Geol. 159:283-304.   DOI
44 Wanninkhof, R. 1992. Relationship between wind speed and gas exchange over the ocean. J. Geophys. Res. 97:7373-7382.   DOI
45 Weiss, R. F. 1974. Carbon dioxide in water and seawater: the solubility of a non-ideal gas. Mar. Chem. 2:203-215.   DOI
46 Ziegler, S. & Benner, R. 1998. Ecosystem metabolism in a subtropical, seagrass-dominated lagoon. Mar. Ecol. Prog. Ser. 173:1-12.   DOI