Browse > Article
http://dx.doi.org/10.4490/algae.2013.28.1.111

In vitro studies of anti-inflammatory and anticancer activities of organic solvent extracts from cultured marine microalgae  

Samarakoon, Kalpa W. (Department of Marine Life Science, Jeju National University)
Ko, Ju-Young (Department of Marine Life Science, Jeju National University)
Shah, Md. Mahfuzur Rahman (Jeju Sea Grant Center, Department of Earth and Marine Sciences, College of Ocean Sciences Jeju National University)
Lee, Ji-Hyeok (Department of Marine Life Science, Jeju National University)
Kang, Min-Cheol (Department of Marine Life Science, Jeju National University)
Kwon, O-Nam (Marine Biology Center for Research and Education, Gangneung-Wonju National University)
Lee, Joon-Baek (Jeju Sea Grant Center, Department of Earth and Marine Sciences, College of Ocean Sciences Jeju National University)
Jeon, You-Jin (Department of Marine Life Science, Jeju National University)
Publication Information
ALGAE / v.28, no.1, 2013 , pp. 111-119 More about this Journal
Abstract
Marine microalgae are a promising source of organisms that can be cultured and targeted to isolate the broad spectrum of functional metabolites. In this study, two species of cyanobacteria, Chlorella ovalis Butcher and Nannchloropsis oculata Droop, one species of bacillariophyta, Phaeoductylum tricornutum Bohlin, and one species of Dinophyceae, Amphidinium carterae (Hulburt) were cultured and biomasses used to evaluate the proximate comical compositions. Among the determined proximate chemical compositions of the cultured marine microalgae, the highest content of crude proteins and lipids were exhibited in P. tricornutum and A. carterae, respectively. Solvent-solvent partition chromatography was subjected to fractionate each of the cultured species and separated n-hexane, chloroform, ethyl acetate, and aqueous fractions. Nitric oxide production inhibitory level (%) and cytotoxicity effect on lipo-polysaccharide-induced RAW 264.7 macrophages were performed to determine the anti-inflammatory activity. N. oculata hexane and chloroform fractions showed significantly the strongest anti-inflammatory activity at $6.25{\mu}g\;mL^{-1}$ concentration. The cancer cell growth inhibition (%) was determined on three different cell lines including HL-60 (a human promyelocytic leukemia cell line), A549 (a human lung carcinoma cell line), and B16F10 (a mouse melanoma cell line), respectively. Among the extracts, C. ovalis ethyl acetate and A. carterae chloroform fractions suppressed the growth of HL-60 cells significantly at 25 and $50{\mu}g\;mL^{-1}$ concentrations. Thus, the cultured marine microalgae solvent extracts may have potentiality to isolate pharmacologically active metabolites further using advance chromatographic steps. Hence, the cultured marine microalgae can be described as a good candidate for the future therapeutic uses.
Keywords
Amphidinium carterae; anticancer; anti-inflammatory effect; Chlorella ovalis; cultured marine microalgae; Nannchloropsis oculata; Phaeoductylum tricornutum;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sheih, I. C., Wu, T. K. & Fang, T. J. 2009. Antioxidant properties of a new antioxidative peptide from algae protein hydrolysate in different oxidation systems. Bioresour. Technol. 100:3419-3425.   DOI   ScienceOn
2 Wadleigh, D. J., Reddy, S. T., Kopp, E., Ghosh, S. & Herschman, H. R. 2000. Transcriptional activation of the cyclooxygenase-2 gene in endotoxin-treated RAW 264.7 macro-phages. J. Biol. Chem. 275:6259-6266.   DOI   ScienceOn
3 Walne, P. R. 1966. Experiments in the large-scale culture of larvae of Ostrea edulis L. Fish. Invest. Ser. 2 25:1-53.
4 Andrianasolo, E. H., Haramaty, L., Vardi, A., White, E., Lutz, R. & Falkowski, P. 2008. Apoptosis-inducing galactolipids from a cultured marine diatom, Phaeodactylim tricornutum. J. Nat. Prod.71:1197-1201.
5 Desbois, A. P., Meams-Spragg, A. & Smith, V. J. 2009. A fatty acid from the diatom Phaeodactylum tricornutum is antibacterial against diverse bacteria including multi-resistant Staphylococcus aureus (MRSA). Mar. Biotechnol. 11:45-52.   DOI
6 Association of Official Analytical Chemists (AOAC). 1990. Official methods of analysis of the Association of Official Analytical Chemists. 16th ed. Association of Official Analytical Chemists, Arlington, VA, 684 pp.
7 Becker, E. W. 2007. Micro-algae as a source of protein. Biotechnol. Adv. 25:207-210.   DOI   ScienceOn
8 Borowitzka, M. A. 1995. Microalgae as sources of pharamaceuticals and other biologically active compounds. J. Appl. Phycol. 7:3-15.   DOI   ScienceOn
9 Dvir, I., Stark, A. H., Chayoth, R., Madar, Z. & Arad, S. M. 2009. Hypochlesterolemic effects of nutraceuticals produced from the red microalga Porphyridium sp. in rats. Nutrients 1:156-167.   DOI
10 Guzman, S., Gato, A., Lamela, M., Freire-Garabal, M. & Calleja, J. M. 2003. Anti-inflammatory and immunomodulatory activities of polysaccharide form Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother. Res.17:665-670.   DOI   ScienceOn
11 Hong, J. W., Kim, S. A., Chang, J., Yi, J., Jeong, J., Kim, S., Kim, S. H. & Yoon, S. -H. 2012. Isolation and description of a Korean microalga, Asterarcys quadricellulare KNUA020, and analysis of its biotechnological potential. Algae 27:197-203.   과학기술학회마을   DOI   ScienceOn
12 Imhoff, J. F., Labes, A. & Wiese, J. 2011. Bio-mining the microbial treasures of the ocean: new natural products. Biotechnol. Adv. 29:468-482.   DOI   ScienceOn
13 Kim, S. K. & Wijesekara, I. 2010. Development and biological activities of marine-derived bioactive peptides: a review. J. Funct. Foods 2:1-9.   DOI   ScienceOn
14 Plaza, M., Cifuentes, A. & Ibanez, E. 2008. In the search of new functional food ingredients from algae. Trends Food Sci. Technol. 19:31-39.   DOI   ScienceOn
15 Lee, M. H., Lee, J. M., Jun, S. H., Lee, S. H., Kim, N. W., Lee, J. H., Ko, N. Y., Mun, S. H., Kim, B. K., Lim, B. O., Choi, D. K. & Choi, W. S. 2007. The anti-inflammatory effects of Pyrolae herba extract through the inhibition of the expression of inducible nitric oxide synthase (iNOS) and NO production. J. Ethnopharmacol. 112:49-54.   DOI   ScienceOn
16 Liang, S., Liu, X., Chen, F. & Chen, Z. 2004. Current microalgal health food R & D activities in China. Hydrobiologia 512:45-48.   DOI   ScienceOn
17 Morris, H. J., Carrillo, O., Almarales, A., Bermudez, R. C., Lebeque, Y., Fontaine, R., Liauradó, G. & Beltran, Y. 2007. Immunostimulant activity of an enzymatic protein hydrolysate from green micralga Chlorella vulgaris on undernourished mice. Enzyme Microb. Technol. 40:456-460.   DOI   ScienceOn
18 Plaza, M., Herrero, M., Cifuentes, A. & Ibanez, E. 2009. Innovative natural functional ingredients from microalgae. J. Agr. Food Chem. 57:7159-7170.   DOI   ScienceOn
19 Rasmussen, B., Fletcher, I. R., Brocks, J. J. & Kilburn, M. R. 2008. Reassessing the first appearance of eukaryotes and cyanobacteria. Nature 455:1101-1114.   DOI   ScienceOn
20 Samarakoon, K. W., O-Nam, K., Ko, J. Y., Lee, J. -H., Kang, M. -C., Kim, D., Lee, J. B., Lee, J. -S. & Jeon, Y. -J. 2013. Purification and identification of novel angiotensin-I converting enzyme (ACE) inhibitory peptides from cultured marine microalgae (Nannochloropsis oculata) protein hydrolysate. J. Appl. Phycol. http://dx.doi.org/10.1007/ s10811-013-9994-6.   DOI   ScienceOn
21 Sheih, I. C., Fang, T. J., Wu, T. K. & Lin, P. H. 2010. Anticancer and antioxidant activities of the peptide fraction from algae protein in waste. J. Agric. Food Chem. 58:1202-1207.   DOI   ScienceOn