Browse > Article
http://dx.doi.org/10.4490/algae.2012.27.4.295

Influence of CO2 concentration on carbon concentrating mechanisms in cyanobacteria and green algae: a proteomic approach  

Ramanan, Rishiram (Environmental Health Division, National Environmental Engineering Research Institute (NEERI))
Vinayagamoorthy, Nadimuthu (Environmental Health Division, National Environmental Engineering Research Institute (NEERI))
Sivanesan, Saravana Devi (Environmental Health Division, National Environmental Engineering Research Institute (NEERI))
Kannan, Krishnamurthi (Environmental Health Division, National Environmental Engineering Research Institute (NEERI))
Chakrabarti, Tapan (Environmental Health Division, National Environmental Engineering Research Institute (NEERI))
Publication Information
ALGAE / v.27, no.4, 2012 , pp. 295-301 More about this Journal
Abstract
Carbon concentrating mechanisms play a vital role in photosynthesis in microalgae and cyanobacteria especially in the proper functioning of Rubisco and assimilation of carbon via the Calvin cycle. This study evaluates the role of carbon dioxide on carbon concentrating mechanism (CCM) in a cynaobacteria, Spirulina platensis and a microalga, Chlorella sp. 786. The study organisms were grown in both atmospheric (control sample, 0.035%) and high (exposed sample, 10%) $CO_2$ concentrations. Second dimension (2D) electrophoresis revealed a huge difference in the protein profiles of both organisms suggesting the induction of CCM related proteins in the sample maintained at atmospheric $CO_2$ concentration and the repression of CCM related proteins in the sample maintained at 10% $CO_2$. Liquid chromatography-mass spectroscopy analysis revealed the presence of two important $C_i$ transporter proteins in the control sample of S. platensis, namely ferredoxin-$NADP^+$ reductase and ATP binding cassette (ABC) transport system protein. These proteins were only expressed in the control sample and were downregulated or not expressed at all in the exposed sample. Consequently, this study conclusively proves that CCMs are only inducted at low $CO_2$ concentrations and are not functional at high $CO_2$ concentration.
Keywords
carbon concentrating mechanism (CCM); Chlorella sp.; cyanobacteria; proteomics; Rubisco; Spirulina platensis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Yamano, T., Miura, K. & Fukuzawa, H. 2008. Expression analysis of genes associated with the induction of the carbon-concentrating mechanism in Chlamydomonas reinhardtii. Plant Physiol. 147:340-354.   DOI
2 Atteia, A., Adrait, A., Brugiere, S., Tardif, M., van Lis, R., Deusch, O., Dagan, T., Kuhn, L., Gontero, B., Martin, W., Garin, J., Joyard, J. & Rolland, N. 2009. A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the $\alpha$-proteobacterial mitochondrial ancestor. Mol. Biol. Evol. 26:1533-1548.   DOI
3 Baba, M., Suzuki, I. & Shiraiwa, Y. 2011. Proteomic analysis of high-$CO_{2}$-inducible extracellular proteins in the unicellular green alga, Chlamydomonas reinhardtii. Plant Cell Physiol. 52:1302-1314.   DOI
4 Beardall, J., Johnston, A. & Raven, J. 1998. Environmental regulation of $CO_{2}$-concentrating mechanisms in microalgae. Can. J. Bot. 76:1010-1017.
5 Cannon, G. C., Heinhorst, S. & Kerfeld, C. A. 2010. Carboxysomal carbonic anhydrases: structure and role in microbial $CO_{2}$ fixation. Biochim. Biophys. Acta 1804:382-392.   DOI
6 Fang, W., Si, Y., Douglass, S., Casero, D., Merchant, S. S., Pellegrini, M., Ladunga, I., Liu, P. & Spalding, M. H. 2012. Transcriptome-wide changes in Chlamydomonas reinhardtii gene expression regulated by carbon dioxide and the $CO_{2}$-concentrating mechanism regulator CIA5/CCM1. Plant Cell 24:1876-1893.   DOI
7 Fukuzawa, H., Miura, K., Ishizaki, K., Kucho, K., Saito, T., Kohinata, T. & Ohyama, K. 2001. Ccm1, a regulatory gene controlling the induction of a carbon-concentrating mechanism in Chlamydomonas reinhardtii by sensing $CO_{2}$ availability. Proc. Natl. Acad. Sci. U. S. A. 98:5347- 5352.   DOI
8 Fulke, A. B., Mudliar, S. N., Yadav, R., Shekh, A. S., Srinivasan, N., Ramanan, R., Krishnamurthi, K., Devi, S. S. & Chakrabarti, T. 2010. Bio-mitigation of $CO_{2}$, calcite formation and simultaneous biodiesel production using Chlorella sp. Bioresour. Technol. 101:8473-8476.   DOI
9 Giordano, M., Beardall, J. & Raven, J. A. 2005. $CO_{2}$ concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu. Rev. Plant Biol. 56:99-131.   DOI
10 Guedeney, G., Corneille, S., Cuine, S. & Peltier, G. 1996. Evidence for an association of ndh B, ndh J gene products and ferredoxin-NADP-reductase as components of a chloroplastic NAD(P)H dehydrogenase complex. FEBS Lett. 387:277-280.
11 Kaplan, A. & Reinhold, L. 1999. $CO_{2}$ concentrating mechanisms in photosynthetic microorganisms. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50:539-570.   DOI
12 Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. 1951. Protein measurement with folin phenol reagent. J. Biol. Chem. 193:265-75.
13 Moroney, J. V. & Somanchi, A. 1999. How do algae concentrate $CO_{2}$ to increase the efficiency of photosynthetic carbon fixation. Plant Physiol. 119:9-16.   DOI   ScienceOn
14 Moroney, J. V. & Ynalvez, R. A. 2007. Proposed carbon dioxide concentrating mechanism in Chlamydomonas reinhardtii. Eukaryot. Cell 6:1251-1259.   DOI
15 Prentice, I. C. 2001. The carbon cycle and atmospheric carbon dioxide. In Houghton, J. T., Ding, Y., Griggs, D. J., Nogure, M., van der Linden, P. J., Dai, X., Maskell, K. & Johnson, C. A. (Eds.) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp. 183-237.
16 Price, G. D., Badger, M. R., Woodger, F. J. & Long, B. M. 2008. Advances in understanding the cyanobacterial $CO_{2}$-concentrating-mechanism (CCM): functional components, $C_{i}$ transporters, diversity, genetic regulation and prospects for engineering into plants. J. Exp. Bot. 59: 1441-1461.
17 Price, G. D., Maeda, S. -I., Omata, T. & Badger, M. R. 2002. Modes of active inorganic carbon uptake in the cyanobacterium Synechococcus sp. PCC7942. Funct. Plant Biol. 29:131-149.   DOI
18 Ramanan, R., Kannan, K., Deshkar, A., Yadav, R. & Chakrabarti, T. 2010. Enhanced algal $CO_{2}$ sequestration through calcite deposition by Chlorella sp. and Spirulina platensis in a mini-raceway pond. Bioresour. Technol. 101:2616-2622.   DOI
19 Renberg, L., Johansson, A. I., Shutova, T., Stenlund, H., Aksmann, A., Raven, J. A., Gardeström, P., Moritz, T. & Samuelsson, G. 2010. A metabolomic approach to study major metabolite changes during acclimation to limiting $CO_{2}$ in Chlamydomonas reinhardtii. Plant Physiol. 154:187-196.   DOI
20 Spalding, M. H., Van, K., Wang, Y. & Nakamura, Y. 2002. Acclimation of Chlamydomonas to changing carbon availability. Funct. Plant Biol. 29:221-230.   DOI
21 Stauber, E. J. & Hippler, M. 2004. Chlamydomonas reinhardtii proteomics. Plant Physiol. Biochem. 42:989-1001.   DOI
22 Van, K., Wang, Y., Nakamura, Y. & Spalding, M. H. 2001. Insertional mutants of Chlamydomonas reinhardtii that require elevated $CO_{2}$ for survival. Plant Physiol. 127:607- 614.   DOI
23 Vance, P. & Spalding, M. H. 2005. Growth, photosynthesis, and gene expression in Chlamydomonas over a range of $CO_{2}$ concentrations and $CO_{2}$/$O_{2}$ ratios: $CO_{2}$ regulates multiple acclimation states. Can. J. Bot. 83:796-809.   DOI
24 Wienkoop, S., Wei, J., May, P., Kempa, S., Irgang, S., Recuenco- Munoz, L., Pietzke, M., Schwemmer, T., Rupprecht, J., Egelhofer, V. & Weckwerth, W. 2010. Targeted proteomics for Chlamydomonas reinhardtii combined with rapid subcellular protein fractionation, metabolomics and metabolic flux analyses. Mol. Biosyst. 6:1018-1031.   DOI
25 Yamano, T. & Fukuzawa, H. 2009. Carbon-concentrating mechanism in a green alga, Chlamydomonas reinhardtii, revealed by transcriptome analyses. J. Basic Microbiol. 49:42-51.   DOI