Browse > Article
http://dx.doi.org/10.4490/algae.2011.26.2.167

Erythrolobus australicus sp. nov. (Porphyridiophyceae, Rhodophyta): a description based on several approaches  

Yang, Eun-Chan (Bigelow Laboratory for Ocean Sciences)
Scot, Joe (Department of Biology, College of William & Mary)
West, John A. (School of Botany, University of Melbourne)
Yoon, Hwan-Su (Bigelow Laboratory for Ocean Sciences)
Yokoyama, Akiko (Structural Biosciences, Graduate School of Life and Environmental Sciences, University of Tsukuba)
Karsten, Ulf (Institute of Biological Sciences - Applied Ecology, University of Rostock)
De Goer, Susan Loiseaux (11 Rue des Moguerou)
Orlova, Evguenia (Department of Biology, College of William & Mary)
Publication Information
ALGAE / v.26, no.2, 2011 , pp. 167-180 More about this Journal
Abstract
The unicellular marine red alga Erythrolobus australicus sp. nov. (Porphyridiophyceae) was isolated into laboratory culture from mangroves in Queensland and New South Wales, Australia. The single multi-lobed red to rose-red plastid has more than one pyrenoid and lacks a peripheral thylakoid. Arrays of small electron dense globules occur along the thylakoids. The nucleus is peripheral with a central to eccentric nucleolus. Each Golgi body is associated with a mitochondrion. The spherical cells are positively phototactic with slow gliding movement. The psaA + psbA phylogeny clearly showed that E. australicus is a distinct species, which is closely related to E. coxiae. The chemotaxonomically relevant and most abundant low molecular weight carbohydrate in E. australicus is floridoside with concentrations between 209 and 231 ${\mu}mol g^{-1}$ dry weight. Traces of digeneaside were also detected. These various approaches help to understand the taxonomic diversity of unicellular red algae.
Keywords
Australia; digeneaside; Erythrolobus; floridoside; molecular phylogeny; Porphyridiophyceae; ultrastructure; unicells;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Yoon, H. S., Zuccarello, G. C. & Bhattacharya, D. 2010. Evolutionary history and taxonomy of red algae. In Seckbach, J. & Chapman, D. J. (Eds.) Red Algae in the Genomic Age: Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer, Heidelberg, pp. 25-42.
2 Scott, J., Yokoyama, A., Billard, C., Fresnel, J., Hara, Y., West, K. A. & West, J. A. 2008. Neorhodella cyanea, a new genus in the Rhodellophyceae (Rhodophyta). Phycologia 47:560-572.   DOI
3 Scott, J. L., Baca, B., Ott, F. D. & West, J. A. 2006. Light and electron microscopic observations on Erythrolobus coxiae gen. et sp. nov. (Porphyridiophyceae, Rhodophyta) from Texas U.S.A. Algae 21:407-416.   DOI
4 Stamatakis, A. 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics 22:2688-2690.   DOI
5 Swofford, D. L. 2002. PAUP*: phylogenetic analysis using parsimony (*and other methods). Version 4.0b10. Sinauer Associates, Sunderland, MA.
6 West, J. A. 2005. Long term macroalgal culture maintenance. In Anderson, R. A. (Ed.) Algal Culturing Techniques. Academic Press, New York, pp. 157-163.
7 West, J. A. & Zuccarello, G. C. 1999. Biogeography of sexual and asexual populations in Bostrychia moritziana (Rhodomelaceae, Rhodophyta). Phycol. Res. 47:115-123.   DOI   ScienceOn
8 Yang, E. C., Scott, J., West, J. A., Orlova, E., Gauthier, D., Küpper, F. C., Yoon, H. S. & Karsten, U. 2010. New taxa of the Porphyridiophyceae (Rhodophyta): Timspurckia oligopyrenoides gen. et sp. nov. and Erythrolobus madagascarensis sp. nov. Phycologia 49:604-616.   DOI
9 Yokoyama, A., Scott, J. L., Zuccarello, G. C., Kajikawa, M., Hara, Y. & West, J. A. 2009. Corynoplastis japonica gen. et sp. nov. and Dixoniellales ord. nov. (Rhodellophyceae, Rhodophyta) based on morphological and molecular evidence. Phycol. Res. 57:278-289.   DOI
10 Yoon, H. S., Müller, K. M., Sheath, R. G., Ott, F. D. & Bhattacharya, D. 2006. Defining the major lineages of red algae (Rhodophyta). J. Phycol. 42:482-492.   DOI
11 Karsten, U., West, J. A., Zuccarello, G. C., Nixdorf, O., Barrow, K. D. & King, R. J. 1999. Low molecular weight carbohydrate patterns in the Bangiophyceae (Rhodophyta). J. Phycol. 35:967-976.   DOI
12 Keane, T. M., Creevey, C. J., Pentony, M. M., Naughton, T. J. & McInerney, J. O. 2006. Assessment of methods for amino acid matrix selection and their use on empirical data shows that ad hoc assumptions for choice of matrix are not justified. BMC Evol. Biol. 6:29.   DOI
13 Kremer, B. P. 1978. Patterns of photoassimilatory products in Pacific Rhodophyceae. Can. J. Bot. 56:1655-1659.   DOI
14 Le, S. Q. & Gascuel, O. 2008. An improved general amino acid replacement matrix. Mol. Biol. Evol. 25:1307-1320.   DOI
15 Okaichi, T., Nishino, S. & Imatomi, Y. 1982. Collection and mass culture. In Japanese Fisheries Society (Ed.) Toxic Phytoplankton: Occurrence, Mode of Action, and Toxins. Koseisha-Koseikaku, Tokyo, pp. 23-34 (in Japanese without English title).
16 Pickett-Heaps, J. D., West, J. A., Wilson, S. M. & McBride, D. L. 2001. Time-lapse videomicroscopy of cell (spore) movement in red algae. Eur. J. Phycol. 36:9-22.   DOI
17 Pueschel, C. 1990. Cell structure. In Cole, K. M. & Sheath, R. G. (Eds.) Biology of the Red Algae. Cambridge University Press, New York, pp. 7-41.
18 Ronquist, F. & Huelsenbeck, J. P. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572-1574.   DOI
19 Schornstein, K. L. & Scott, J. 1982. Ultrastructure of cell division in the unicellular red alga Porphyridium purpureum. Can. J. Bot. 60:85-97.   DOI
20 Saunders, G. W. & Hommersand, M. H. 2004. Assessing red algal supraordinal diversity and taxonomy in the context of contemporary systematic data. Am. J. Bot. 91:1494-1507.   DOI
21 Coleman, A. W. 1985. Diversity of plastid DNA configuration among classes of eurkaryotic algae. J. Phycol. 21:1-16.
22 Eggert, A. & Karsten, U. 2010. Low molecular weight carbohydrates in red algae: an ecophysiological and biochemical perspective. In Seckbach, J. & Chapman, D. J. (Eds.) Red Algae in the Genomic Age: Cellular Origin, Life in Extreme Habitats and Astrobiology. Springer, Heidelberg, pp. 443-456.
23 Gantt, E. & Conti, S. F. 1965. The ultrastructure of Porphyridium cruentum. J. Cell Biol. 26:365-381.   DOI
24 Gantt, E., Edwards, M. R. & Conti, S. F. 1968. Ultrastructure of Porphyridium aerugineum: a blue-green colored Rhodophytan. J. Phycol. 4:65-71.   DOI
25 Guiry, M. D. & Guiry, G. M. 2011. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. Available from: http://www.algaebase.org. Accessed Mar 3, 2011.
26 Hirakawa, Y., Gile, G. H., Ota, S., Keeling, P. J. & Ishida, K. 2010. Characterization of periplastidal compartment: targeting signals in Chlorarachniophytes. Mol. Biol. Evol. 27:1538-1545.   DOI
27 Karsten, U., Görs, S., Eggert, A. & West, J. A. 2007. Trehalose, digeneaside, and floridoside in the Florideophyceae (Rhodophyta): a reevaluation of its chemotaxonomic value. Phycologia 46:143-150.   DOI
28 Barrow, K. D., Karsten, U., King, R. J. & West, J. A. 1995. Floridoside in the genus Laurencia (Rhodomelaceae: Ceramiales): a chemosystematic study. Phycologia 34:279-283.   DOI
29 Karsten, U., Michalik, D., Michalik, M. & West, J. A. 2005. A new unusual low molecular weight carbohydrate in the red algal genus Hypoglossum (Delesseriaceae, Ceramiales) and its possible function as an osmolyte. Planta 222:319-326.   DOI
30 Karsten, U., West, J. A., Zuccarello, G. C., Engbrodt, R., Yokoyama, A., Hara, Y. & Brodie, J. 2003. Low molecular weight carbohydrates of the Bangiophycidae (Rhodophyta). J. Phycol. 39:584-589.   DOI
31 Broadwater, S. T. & Scott, J. L. 1994. Ultrastructure of unicellular red algae. In Seckbach, J. (Ed.) Evolutionary Pathways and Enigmatic Algae: Cyanidium caldarium (Rhodophyta) and Related Cells. Kluwer, Dordrecht, pp. 215-230.