Browse > Article
http://dx.doi.org/10.4490/algae.2010.25.2.089

Chlorophyll α fluorescence as an indicator of establishment of Zostera marina transplants on the southern coast of Korea  

Li, Wen-Tao (Department of Biological Sciences, Pusan National University)
Park, Jung-Im (Department of Biological Sciences, Pusan National University)
Park, Sang-Rul (Department of Biological Sciences, Pusan National University)
Zhang, Xiu-Mei (Department of Marine Fisheries, Ocean University of China)
Lee, Kun-Seop (Department of Biological Sciences, Pusan National University)
Publication Information
ALGAE / v.25, no.2, 2010 , pp. 89-97 More about this Journal
Abstract
To test the feasibility of using chlorophyll ${\alpha}$ fluorescence to assess the establishment success of seagrass transplants, photosynthetic characteristics of eelgrass Zostera marina transplants were measured using a Diving-pulsed amplitude modulation fluorometer in Jindong Bay on the southern coast of Korea. Maximum quantum yield ($F_v/F_m$), photosynthetic efficiency ($\alpha$), saturating irradiance ($E_k$) and maximum electron transport rate ($ETR_{max}$) of transplants and reference plants in a nearby transplant site were measured using the fluorometer for 5 months. Additionally, shoot morphology, individual shoot weight and productivity of transplants and reference plants were also monitored. Shoot height, leaf weight and productivity of transplants were significantly reduced during the first two or three months after transplantation compared to those of reference plants, and then increased to the levels of reference plants Characteristics of chlorophyll a fluorescence, including $F_v/F_m$, $\alpha$, $E_k$ and $ETR_{max}$ of transplants were also significantly reduced in the initial period, but recovered slightly sooner than shoot morphology or leaf productivity. These results indicated that after transplantation, Z. marina transplant photosynthesis recovered faster than shoot morphology, biomass or productivity. Thus, chlorophyll a fluorescence can be used as an indicator for early assessment of the status of eelgrass transplants without destructive sampling.
Keywords
chlorophyll a fluorescence; electron transport rate; maximum quantum yield; photosynthetic efficiency; transplantation; Zostera marina;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Tanaka, Y. & Nakaoka, M. 2004. Emergence stress and morphological constraints affect the species distribution and growth of subtropical intertidal seagrasses. Mar. Ecol. Prog. Ser. 284:117-131.   DOI
2 van Tussenbroek, B. I. 1996. Leaf dimensions of transplants of Thalassia testudinum in a Mexican Caribbean reef lagoon. Aquat. Bot. 55:133-138.   DOI
3 Villafane, V. E., Marcoval, M. A. & Helbling, E. W. 2004. Photosynthesis versus irradiance characteristics in phytoplankton assemblages off Patagonia (Argentina): temporal variability and solar UVR effects. Mar. Ecol. Prog. Ser. 284:23-34.   DOI
4 Zieman, J. C. 1974. Methods for the study of the growth and production of turtle grass, Thalassia testudinum Konig. Aquaculture 4:139-143.   DOI
5 Zimmerman, R. C., Reguzzoni, J. L. & Alberte, R. S. 1995. Eelgrass (Zostera marina L.) transplants in San Francisco Bay: role of light availability on metabolism, growth and survival. Aquat. Bot. 51:67-86.   DOI   ScienceOn
6 Park, J. I. & Lee, K. S. 2007. Site-specific success of three transplanting methods and the effect of planting time on the establishment of Zostera marina transplants. Mar. Pollut. Bull. 54:1238-1248.   DOI
7 Peralta, G., Bouma, T. J., van Soelen, J., Perez-Llorens, J. L. & Hernandez, I. 2003. On the use of sediment fertilization for seagrass restoration: a mesocosm study on Zostera marina L. Aquat. Bot. 75:95-110.   DOI
8 Platt, T., Gallegos, C. L. & Harrison, W. G. 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. Mar. Res. 38:687-701.
9 Ralph, P. J. & Burchett, M. D. 1995. Photosynthetic responses of the seagrass Halophila ovalis (R. Br.) Hook. f. to high irradiance stress, using chlorophyll a fluorescence. Aquat. Bot. 51:55-66.   DOI
10 Ralph, P. J. & Burchett, M. D. 1998. Photosynthetic response of Halophila ovalis to heavy metal stress. Environ. Pollut. 103:91-101.   DOI
11 Ralph, P. J. & Gademann, R. 2005. Rapid light curves: a powerful tool to assess photosynthetic activity. Aquat. Bot. 82:222-237.   DOI
12 Ralph, P. J., Gademann, R. & Dennison, W. C. 1998. In situ seagrass photosynthesis measured using a submersible, pulse-amplitude modulated fluorometer. Mar. Biol. 132: 367-373.   DOI
13 Seddon, S. & Cheshire, A. C. 2001. Photosynthetic response of Amphibolis antarctica and Posidonia australis to temperature and desiccation using chlorophyll fluorescence. Mar. Ecol. Prog. Ser. 220:119-130.   DOI
14 Sharon, Y. & Beer, S. 2008. Diurnal movements of chloroplasts in Halophila stipulacea and their effect on PAM fluorometric measurements of photosynthetic rates. Aquat. Bot. 88:273-276.   DOI
15 Lamote, M. & Dunton, K. H. 2006. Effects of drift macroalgae and light attenuation on chlorophyll fluorescence and sediment sulfides in the seagrass Thalassia testudinum. J. Exp. Mar. Biol. Ecol. 334:174-186.   DOI   ScienceOn
16 Kahn, A. E. & Durako, M. J. 2008. Photophysiological responses of Halophila johnsonii to experimental hyposaline and hyper-CDOM conditions. J. Exp. Mar. Biol. Ecol. 367:230-235.   DOI
17 Kahn, A. E. & Durako, M. J. 2009. Photosynthetic tolerances to desiccation of the co-occurring seagrasses Halophila johnsonii and Halophila decipiens. Aquat. Bot. 90:195-198.   DOI
18 Koch, M. S., Schopmeyer, S. A., Kyhn-Hansen, C., Madden, C. J. & Peters, J. S. 2007. Tropical seagrass species tolerance to hypersalinity stress. Aquat. Bot. 86:14-24.   DOI
19 Lan, C. Y., Kao, W. Y., Lin, H. J. & Shao, K. T. 2005. Measurement of chlorophyll fluorescence reveals mechanisms for habitat niche separation of the intertidal seagrasses Thalassia hemprichii and Halodule uninervis. Mar. Biol. 148:25-34.   DOI
20 Lee, K. S. & Park, J. I. 2008. An effective transplanting technique using shells for restoration of Zostera marina habitats. Mar. Pollut. Bull. 56:1015-1021.   DOI   ScienceOn
21 Lepoint, G., Vangeluwe, D., Eisinger, M., Paster, M., van Treeck, P., Bouquegneau, J. M. & Gobert, S. 2004. Nitrogen dynamics in Posidonia oceanica cuttings: implications for transplantation experiments. Mar. Pollut. Bull. 48:465-470.   DOI
22 Moore, K. A., Neckles, H. A. & Orth, R. J. 1996. Zostera marina (eelgrass) growth and survival along a gradient of nutrients and turbidity in the lower Chesapeake Bay. Mar. Ecol. Prog. Ser. 142:247-259.   DOI
23 Durako, M. J., Kunzelman, J. I., Kenworthy, W. J. & Hammerstrom, K. K. 2003. Depth-related variability in the photobiology of two populations of Halophila johnsonii and Halophila decipiens. Mar. Biol. 142:1219-1228.   DOI
24 Orth, R. J., Harwell, M. C. & Fishman, J. R. 1999. A rapid and simple method for transplanting eelgrass using single, unanchored shoots. Aquat. Bot. 64:77-85.   DOI
25 Collier, C. J., Lavery, P. S., Ralph, P. J. & Masini, R. J. 2009. Shade-induced response and recovery of the seagrass Posidonia sinuosa. J. Exp. Mar. Biol. Ecol. 370:89-103.   DOI
26 Cullen, J. J., Yentsch, C. M., Cucci, T. L. & MacIntyre, H. L. 1988. Autofluorescence and other optical properties as tools in biological oceanography. SPIE 925:149-156.
27 Evans, N. T. & Short, F. T. 2005. Functional trajectory models for assessment of transplanted eelgrass, Zostera marina L., in the Great Bay Estuary, New Hampshire. Estuaries 28:936-947.   DOI
28 Figueroa, F. L., Jimenez, C., Vinegla, B., Perez- Rodriguez, E., Aguilera, J., Flores-Moya, A., Altamirano, M., Lebert, M. & Hader, D. P. 2002. Effects of solar UV radiation on photosynthesis of the marine angiosperm Posidonia oceanica from southern Spain. Mar. Ecol. Prog. Ser. 230:59-70.   DOI
29 Fishman, J. R., Orth, R. J., Marion, S. & Bieri, J. 2004. A comparative test of mechanized and manual transplanting of eelgrass, Zostera marina, in Chesapeake Bay. Restor. Ecol. 12:214-219.   DOI
30 Fonseca, M. S., Kenworthy, W. J. & Courtney, F. X. 1996. Development of planted seagrass beds in Tampa Bay, Florida, USA. 1. Plant components. Mar. Ecol. Prog. Ser. 132:127-139.   DOI
31 Bischof, K., Hanelt, D. & Wiencke, C. 2000. Effects of ultraviolet radiation on photosynthesis and related enzyme reactions of marine macroalgae. Planta 211:555-562.   DOI
32 Henley, W. J. 1993. Measurement and interpretation of photosynthetic light-response curves in algae in the context of photoinhibition and diel changes. J. Phycol. 29:729-739.   DOI
33 Horn, L. E., Paling, E. I. & van Keulen, M. 2009. Photosynthetic recovery of transplanted Posidonia sinuosa, Western Australia. Aquat. Bot. 90:149-156.   DOI
34 Biber, P. D., Kenworthy, W. J. & Paerl, H. W. 2009. Experimental analysis of the response and recovery of Zostera marina (L.) and Halodule wrightii (Ascher.) to repeated light-limitation stress. J. Exp. Mar. Biol. Ecol. 369:110-117.   DOI
35 Bite, J. S., Campbell, S. J., McKenzie, L. J. & Coles, R. G. 2007. Chlorophyll fluorescence measures of seagrasses Halophila ovalis and Zostera capricorni reveal differences in response to experimental shading. Mar. Biol. 152:405-414.   DOI
36 Bruhn, J. & Gerard, V. A. 1996. Photoinhibition and recovery of the kelp Laminaria saccharina at optimal and superoptimal temperatures. Mar. Biol. 125:639-648.   DOI
37 Campbell, S., Miller, C., Steven, A. & Stephens, A. 2003. Photosynthetic responses of two temperate seagrasses across a water quality gradient using chlorophyll fluorescence. J. Exp. Mar. Biol. Ecol. 291:57-78.   DOI
38 Campbell, S. J., Kerville, S. P., Coles, R. G. & Short, F. 2008. Photosynthetic responses of subtidal seagrasses to a daily light cycle in Torres Strait: a comparative study. Continental Shelf Res. 28:2275-2281.   DOI
39 Campbell, S. J., McKenzie, L. J., Kerville, S. P. & Bite, J. S. 2007. Patterns in tropical seagrass photosynthesis in relation to light, depth and habitat. Estuar. Coast. Shelf Sci. 73:551-562.   DOI
40 Campbell, S. J., McKenzie, L. J. & Kerville, S. P. 2006. Photosynthetic responses of seven tropical seagrasses to elevated seawater temperature. J. Exp. Mar. Biol. Ecol. 330:455-468.   DOI
41 Adams, W. W. III. & Demmig-Adams, B. 2004. Chlorophyll fluorescence as a tool to monitor plant response to the environment. In Papageorgiou, G. C. & Govindjee (Eds.) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer, Dordrecht, pp. 583-604.
42 Baker, N. R. & Oxborough, K. 2004. Chlorophyll fluorescence as a probe of photosynthetic productivity. In Papageorgiou, G. C. & Govindjee (Eds.) Chlorophyll a Fluorescence: A Signature of Photosynthesis. Springer, Dordrecht, pp. 65-82.
43 Balestri, E., Piazzi, L. & Cinelli, F. 1998. Survival and growth of transplanted and natural seedlings of Posidonia oceanica (L.) Delile in a damaged coastal area. J. Exp. Mar. Biol. Ecol 228:209-225.   DOI
44 Becker, S., Walter, B. & Bischof, K. 2009. Freezing tolerance and photosynthetic performance of polar seaweeds at low temperatures. Bot. Mar. 52:609-616.   DOI
45 Beer, S., Vilenkin, B., Weil, A., Veste, M., Susel, L. & Eshel, A. 1998. Measuring photosynthetic rates in seagrasses by pulse amplitude modulated (PAM) fluorometry. Mar. Ecol. Prog. Ser. 174:293-300.   DOI
46 Beer, S. & Bjork, M. 2000. Measuring rates of photosynthesis of two tropical seagrasses by pulse amplitude modulated (PAM) fluorometry. Aquat. Bot. 66:69-76.   DOI
47 Beer, S., Mtolera, M., Lyimo, T. & Bjork, M. 2006. The photosynthetic performance of the tropical seagrass Halophila ovalis in the upper intertidal. Aquat. Bot. 84:367-371.   DOI