Browse > Article
http://dx.doi.org/10.4490/algae.2010.25.1.017

Effect of salinity on growth and nutrient uptake of Ulva pertusa (Chlorophyta) from an eelgrass bed  

Choi, Tae-Seob (Department of Oceanography, Chonnam National University)
Kang, Eun-Ju (Department of Oceanography, Chonnam National University)
Kim, Ju-Hyoung (Department of Oceanography, Chonnam National University)
Kim, Kwang-Young (Department of Oceanography, Chonnam National University)
Publication Information
ALGAE / v.25, no.1, 2010 , pp. 17-26 More about this Journal
Abstract
The effects of salinity on various ecophysiological parameters of Ulva pertusa such as growth, nutrient uptake, photosynthetic performance and internal nutrient composition were tested. U. pertusa was collected from an eelgrass bed in a semi-protected embayment on the southwest coast of Korea. Under salinity regimes from 5 to 40 psu, the specific growth rates $(\mu)$ of U. pertusa ranged from 0.019 to $0.032\;d^{-1}$. Maximum growth rate was observed at 20 psu, and minimum at 40 psu. This species showed various uptake rates for nitrate and phosphate. Nutrient uptake was noticeably higher at intermediate salinity levels, and lower at both extremes. Salinity significantly influenced chlorophyll-$\alpha$ content and effective quantum yield. Tissue nitrogen content ranged from 1.5 to 2.9% N (dry weight), whereas tissue phosphorus ranged from 0.1 to 0.14% P (dry weight). The N : P ratio in the tissue of U. pertusa was considerably higher, ranging from 30 to 50. Increased growth at lower salinity suggests that the initial growth rate of U. pertusa is greater during the rainy season (i.e., late spring and early summer) than any other season during the year. The appearance of an Ulva bloom in eelgrass beds may be triggered by salinity more than by other environmental factors such as light and temperature.
Keywords
eelgrass bed; growth rate; nitrate; nutrient uptake; phosphate; salinity; Ulva pertusa;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hemminga, M. A. & Duarte, C. M. 2000. Seagrass ecology. Cambridge University Press, Cambridge, 298 pp.
2 Hull, S. C. 1987. Macroalgal mats and species abundance: a field experiment. Estuar. Coast. Shelf Sci. 25:519-532.   DOI
3 Burkholder, J. M., Tomasko, D. A. & Touchette, B. W. 2007. Seagrasses and eutrophication. J. Exp. Mar. Biol. Ecol. 350:46-72.   DOI
4 Choi, T. S., Kim, J. H. & Kim, K. Y. 2001. Seasonal changes in the abundance of Ulva mats on a rocky intertidal zone of the southern coast of Korea. Algae 16:337-341.
5 Craggs, R. J., McAuley, P. J. & Smith, V. J. 1994. Batch culture screening of marine microalgal nutrient removal from primary sewage effluent. Hydrobiologia 288:157-166.   DOI
6 Davison, I. R. & Pearson, G. A. 1996. Stress tolerance in intertidal seaweeds. J. Phycol. 32:197-211.   DOI
7 Lavery, P. S., Lukatelich, R. J. & McComb, A. J. 1991. Changes in the biomass and species composition of macroalgae in a eutrophic estuary. Estuar. Coast. Shelf Sci. 33:1-22.   DOI
8 Sfriso, A. & Marcomini, A. 1997. Macrophyte production in a shallow coastal lagoon: 1. Coupling with chemico-physical parameters and nutrient concentrations in waters. Mar. Environ. Res. 44:351-375.   DOI
9 Liu, C. H., Shih, M. C. & Lee, T. M. 2000. Free proline levels in Ulva (Chlorophyta) in response to hypersalinity: elevated NaCl in seawater versus concentrated seawater. J. Phycol. 36:118-119.   DOI
10 Liu, D. Y., Keesing, J. K., Xing, Q. G. & Shi, P. 2009. World’s largest macroalgal bloom caused by expansion of seaweed aquaculture in China. Mar. Pollut. Bull. 58:888-895.   DOI
11 Lobban, C. S. & Harrison, P. J. 1994. Seaweed ecology and physiology. Cambridge University Press, Cambridge, 366 pp.
12 Martins, I., Oliveira, S. M., Flindt, M. R. & Marques, J. C. 1999. The effect of salinity on the growth rate of the macroalgae Enteromorpha intestinalis (Chlorophyta) in the Mondego estuary (west Portugal). Acta Oecol. 20:259-265.   DOI
13 Martins, I., Pardal, M. A., Lillebo, A. I., Flindt, M. R. & Marques, J. C. 2001. Hydrodynamics as a major factor controlling the occurrence of green macroalgal blooms in a eutrophic estuary: a case study on the influence of precipitation and river management. Est. Coast. Shelf Sci. 52:165-177.   DOI
14 McGlathery, K. J. 2001. Macroalgal blooms contribute to the decline of seagrass in nutrient-enriched coastal waters. J. Phycol. 37:453-456.   DOI
15 McGlathery, K. J., Pedersen, M. F. & Borum, J. 1996. Changes in intracellular nitrogen pools and feedback controls on nitrogen uptake in Chaetomorpha linum (Chlorophyta). J. Phycol. 32:393-401.   DOI
16 Hauxwell, J., Cebrian, J., Furlong, C. & Valiela, I. 2001. Macroalgal canopies contribute to eelgrass (Zostera marina) decline in temperate estuarine ecosystems. Ecology 82:1007-1022.   DOI
17 Zavodnik, N. 1975. Effects of temperature and salinity variations on photosynthesis of some littoral seaweeds of the North Adriatic Sea. Bot. Mar. 18:245-250.   DOI
18 De Casabianca, M. L. 1989. Degradation of Ulva (Ulva rotundata, Prevost Lagoon, France). C. R. Acad. Sci. Paris 308:155-160
19 D’Elia, C. F., Steudler, P. A. & Corwin, N. 1977. Determination of total nitrogen in aqueous samples using persulphate digestion. Limnol. Oceanogr. 22:760-764.   DOI
20 Dickson, D. M. J., Wyn-Jones, R. G. & Davenport, J. 1982. Osmotic adaptation in Ulva latuca under fluctuating salinity regimes. Planta 155:409-415.   DOI
21 Fillit, M. 1995. Seasonal changes in the photosynthetic capacities and pigment content of Ulva rigida in a Mediterranean coastal lagoon. Bot. Mar. 38:271-280.   DOI
22 Lee, T. M. & Liu, C. H. 1999. Correlation of decreased calcium contents with proline accumulation in the marine green macroalga Ulva fasciata exposed to elevated NaCl contents in seawater. J. Exp. Bot. 50:1855-1862.   DOI
23 Edward, D. M., Reed, R. H., Chudek, J. A., Foster, R. & Stewart, W. D. P. 1987. Organic solute accumulation in osmotically-stressed Enteromorpha intestinalis. Mar. Biol. 95:583-592.   DOI
24 Everett, R. A. 1994. Macroalgae in marine soft-sediment communities: effects on benthic faunal assemblages. J. Exp. Mar. Biol. Ecol. 175:253-274.   DOI
25 Floreto, E. A. T., Hirata, H., Yamasaki, S. & Castro, S. C. 1994. Effect of salinity on the growth and fatty acid composition of Ulva pertusa Kjellman (Chlorophyta). Bot. Mar. 37:151-155   DOI
26 Fong, P., Boyer, K. E., Desmond, J. S. & Zedler, J. B. 1996. Salinity stress, nitrogen competition, and facilitation: what controls seasonal succession of two opportunistic green macroalgae? J. Exp. Mar. Biol. Ecol. 206:203-221.   DOI
27 Gordillo, F. J. L., Dring, M. J. & Savidge, G. 2002. Nitrate and phosphate uptake characteristics of three species of brown algae cultured at low salinity. Mar. Ecol. Prog. Ser. 234:111-118.   DOI
28 Grasshoff, K., Ehrhardt, M. & Kremling, K. 1983. Methods of seawater analysis. Verlag Chemie, Weinheim, 419 pp.
29 Morand, P. & Briand, X. 1996. Excessive growth of macroalgae: a symptom of environmental disturbance. Bot. Mar. 39:491-516.   DOI
30 Nedergaard, R. I., Risgaard-Petersen N. & Finster, K. 2002. The importance of sulfate reduction associated with Ulva lactuca thalli during decomposition: a mesocosm experiment. J. Exp. Mar. Biol. Ecol. 275:15-29.   DOI
31 Nelson, T. A., Haberlin, K., Nelson, A. V., Ribarich, H., Hotchkiss, R., Van Alstyne, K. L., Buckingham, L., Simunds, D. J. & Fredrickson, K. 2008. Ecological and physiological controls of species composition in green macroalgal blooms. Ecology 89:1287-1298.   DOI
32 Norton, T. A., Mathieson, A. C. & Neushul, M. 1981. Morphology and envirionment. In Lobban, C. S. & Wynne, M. J. (Eds.) The Biology of Seaweeds. Blackwell Scientific, Oxford, pp. 421-451.
33 Ritchie, R. J. & Larkum, A. W. D. 1987. The ionic relations of small-celled marine algae. Prog. Phycol. Res. 5:179-222.
34 Rivers, J. S. & Peckol, P. 1995. Interactive effects of nitrogen and dissolved inorganic carbon on photosynthesis, growth, and ammonium uptake of macroalgae, Cladophora vagabunda and Gracilaria tikvahiae. Mar. Biol. 121:747-753.   DOI
35 Rosenberg, G. & Ramus, J. 1982. Ecological growth strategies in the seaweeds Gracilaria foliifera (Rhodophyceae) and Ulva sp. (Chlorophyceae): soluble nitrogen and reserve carbohydrates. Mar. Biol. 66:251-259.   DOI
36 Schramm, W. 1996. The Baltic sea and its transition zones. In Schramm, W. & Nienhuis, P. H. Marine Benthic Vegetation: Recent Changes and the Effects of Eutrophication. Springer-Verlag, Berlin, pp. 133.
37 Schreiber, U. & Bilger, W. 1993. Progress in chlorophyll fluorescence research: major developments during the past years in retrospect. Prog. Bot. 54:151-173.
38 Jeffrey, S. W. & Humphrey, G. F. 1975. New spectro-photometric equations for determining chlorophylls a, b, c1and c2 in higher plants, algae and natural phytoplankton. Biochem. Physiol. Pflanzen 167:191-194.
39 Murthy, M. S., Sharma, C. L. N. S. & Rao, Y. N. 1988. Salinity induced changes in peroxidase activity in the green seaweed Ulva lactuca. Bot. Mar. 31:307-310.   DOI
40 Isaksson, I. & Phil, L. 1992. Structural changes in benthic macrovegetation and associated epibenthic faunal communities. Neth. J. Sea Res. 30:131-140.   DOI
41 Kamer, K. & Fong, P. 2000. A fluctuating salinity regime mitigates the negative effects of reduced salinity on the estuarine macroalga, Enteromorpha intestinalis (L.) link. J. Exp. Mar. Biol. Ecol. 254:53-69.   DOI
42 Kim, K. Y., Choi, T. S., Kim, J. H., Han, T., Shin, H. W. & Garbary, D. J. 2004. Physiological ecology and seasonality of Ulva pertusa on a temperate rocky shore. Phycologia 43:483-492.   DOI
43 Kinney, E. H. & Roman, C. T. 1998. Response of primary producers to nutrient enrichment in a shallow estuary. Mar. Ecol. Prog. Ser.163:89-98.   DOI
44 Kirst, G. O. 1990. Salinity tolerance of eukaryotic marine algae. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:21-53.   DOI
45 Krause-Jensen, D., Middelboe, A. L., Sand-Jensen, K. & Christensen, P. B. 2000. Eelgrass, Zostera marina, growth along depth gradients: upper boundaries of the variation as a powerful predictive tool. Oikos 91:233-244.   DOI
46 Valiela, I., McClelland, J., Hauxwell, J., Behr, P. J., Hersh, D. & Foreman, K. 1997. Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnol. Oceanogr. 42:1105-1118.   DOI
47 Sfriso, A., Pavoni, B., Marcomini, A. & Orio, A. A. 1992. Macroalgae, nutrient cycles, and pollutants in the lagoon of Venice. Estuaries 15:517-528.   DOI
48 Short, F. T., Burdick, D. M. & Kaldy, J. E. 1995. Mesocosm experiments quantify the effects of eutrophication on eelgrass, Zostera marina. Limnol. Oceanogr. 40:740-749.   DOI   ScienceOn
49 Trimmer, M., Nedwell, D. B., Sivyer, D. B. & Malcolm, S. J. 2000. Seasonal organic mineralisation and denitrification in intertidal sediments and their relationship to the abundance of Enteromorpha sp. and Ulva sp. Mar. Ecol. Prog. Ser. 203:67-80.   DOI
50 Wheeler, P. A. & Bjornsater, B. R. 1992. Seasonal fluctuations in tissue nitrogen, phosphorus, and N-P for five macroalgal species common to the Pacific northwest coast. J. Phycol. 28:1-6.   DOI
51 Yarish, C. & Edwards, P. 1982. A field and cultural investigation of the horizontal and seasonal distribution of estuarine red algae of New Jersey. Phycologia 21:112-124.   DOI
52 Young, A. J., Collins, J. C. & Russell, G. 1987a. Solute regulation in the euryhaline marine alga Enteromorpha prolifera (O. F. Müll.). J. Ag. J. Exp. Bot. 38:1298-1308.   DOI
53 Young, A. J., Collins, J. C. & Russell, G. 1987b. Ecotypic variation in the osmotic responses of Enteromorpha intestinalis (L.) Link. J. Exp. Bot. 38:1309-1324.   DOI