Browse > Article
http://dx.doi.org/10.4490/ALGAE.2004.19.2.129

Development of Indicator for Coastal and Estuarine Eutrophication Using Morphological Characteristics and Tissue N Content of Eelgrass, Zostera marina  

Lee, Kun-Seop (Deparment of Diology, Pusan National University)
Publication Information
ALGAE / v.19, no.2, 2004 , pp. 129-137 More about this Journal
Abstract
Since cultural eutrophication has the detrimental effects on estuarine and coastal ecosystems, recognition of early stage of nutrient over-enrichment is critical for effective managements of the ecosystems. Since released nutrients into coastal ecosystems are diluted and dissipated through tidal action and rapid uptakes by marine plants, monitoring of in situ nutrient concentrations may not be useful for detecting early eutrophication on coastal and estuarine ecosystems. To develop an effective indicator of cultural eutrophication using marine plants, tissue N content and area normalized leaf mass of eelgrass, Zostera marina were examined in Kosung Bay and Koje Bay on the south coast of Korea from June 2001 to April 2003. Eelgrass tissue N content exhibited obvious seasonal variations. Leaf N content was highest during winter and early spring and lowest during summer. Eelgrass tissue N content was higher at Kosung Bay site, which has higher sediment organic content, than at Koje Bay site. Area normalized leaf mass showed reverse trend of leaf N content, and consequently, eelgrass leaf N content and leaf mass exhibited strong negative correlation at both study sites. The results of the present study suggested that the ratio of eelgrass leaf N content to area normalized leaf mass can be applied to assess environmental nitrogen conditions on the coastal and estuarine ecosystems.
Keywords
Area normalized leaf mass; Coastal eutrophication; Eelgrass; Indicator; N content; Zostera marina;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Atkinson M.J. and Smith S.V. 1983. C:N:P ratios of benthic marine plants. Limnol. Oceanogr. 28: 568-574   DOI
2 Boon P. I., Moriarty D.J.W. and Saffigna P.G. 1986. Rates of ammonium turnover and the role of amino-acid deamination in seagrass (Zostera capricorni) beds of Moreton Bay, Australia. Mar. Biol. 91: 259-268   DOI   ScienceOn
3 Cambridge M.L., Chiffings A.W., Moore B.L. and McComb A.J. 1986. The loss of seagrass in Cockburn Sound, Western Australia. II. Possible causes of seagrass decline. Aquat. Bot. 24: 269-285   DOI   ScienceOn
4 Cambridge M.L. and McComb AI. 1984. The loss of seagrasses in Cockburn Sound, Western Australia. I. The time course and Magnitude of seagrass decline in relation to industrial development. Aquat. Bot. 20: 229-243   DOI   ScienceOn
5 Fong P., Boyer KE. and Zedler J.B. 1998. Developing an indicator of nutrient enrichment in coastal estuaries and lagoons using tissue nitrogen content of the opportunistic alga, Enteromorpha intestinalis (L. Link). J. Exp. Mar. BioI. Ecol. 231: 63-79   DOI   ScienceOn
6 Fong P., Donohoe R.M. and Zedler J.B. 1994. Nutrient concentration in tissue of the macroalga Entromorpha as a function of nutrient history: an experimental evaluation using field microcosms. Mar. Ecol. Prog. Ser. 106: 273-281   DOI
7 Fourqurean J.W., Moore T.O., Fry B. and Hollibaugh J.T. 1997. Spatial and temporal variation in C:N:P ratios, 015N, and 013C of eelgrass Zostera marina as indicators of ecosystem processes, Tomales Bay, California, USA Mar. Ecol. Prog. Ser. 157: 147-157   DOI
8 Fourqurean J.W., Zieman J.e. and Powell G.V.N. 1992. Phosphorus limitation of primary production in Florida Bay: evidence from the C:N:P ratios of the dominant seagrass Thalassia testudinum. Limnol. Oceanogr. 37: 162-171   DOI
9 Hines M.E. and Lyons W.B. 1982. Biogeochemistry of nearshore Bermuda sediments. I. Sulfate reduction rates and nutrient generation. Mar. Ecol. Prog. Ser. 8: 87-94   DOI
10 Holmer M. and Nielsen S.L. 1997. Sediment sulfur dynamics related to biomass-density patterns in Zostera marina (eelgrass) beds. Mar. Ecol. Prog. Ser. 146: 163-171   DOI
11 McMahon K and Walker D.I. 1998. Fate of seasonal, terrestrial nutrient inputs to a shallow seagrass dominated embayment. Est. Coast. ShelfSci. 46: 15-25
12 Iizumi H. and Hattori A 1982. Growth and organic production of eelgrass (Zostera marina L.) in temperate waters of the Pacific coast of Japan. III. The kinetics of nitrogen uptake. Aquat. Bot. 12: 245-256   DOI   ScienceOn
13 Lee K-S. and Lee S.Y. 2003. The seagrasses of the Republic of Korea. In: Green E.P. and Short F.T. (eds), World Atlas of Seagrasses: Present status andfuture conservation. University of California Press. pp. 193-198
14 Lee K-S., Short F.T. and Burdick D.M. 2004. Development of a nutrient pollution indicator using the seagrass, Zostera marina, along nutrient gradients in three New England estuaries. Aquat. Bot. 78: 197-216   DOI   ScienceOn
15 Morgan K.c. and Simpson F.J. 1981. Cultivation of Palmaria (Rhodymenia) palmata: effects of high concentrations of nitrate and ammonium on growth and nitrogen uptake. Aquat. Bot. 11: 167-171   DOI   ScienceOn
16 Moriarty D.J.W. Boon P.I., Hansen J., Hunt W.G., Pointer I.R, Pollard r.c, Skyring GW. and White D.C. 1985. Microbial biomass and productivity in seagrass beds. Geomicrobiol. J. 4: 21-51   DOI   ScienceOn
17 Nixon S.W., Oviatt C.A., Frithser J. and Sullivan B. 1986. Nutrient and the productivity of estuaries and coastal and marine ecosystems. J. Limnol. Soc. SouthAfrica 12: 43-71   DOI
18 Deegan L.A, Wright A, Ayvazian S.G., Finn J.T., Golden H., Merson RR and Harrison J. 2002. Nitrogen loading alters seagrass ecosystem structure and support of higher trophic levels. Aquatic Conserv.: Mar. Freshw. Ecosyst. 12: 193-212   DOI   ScienceOn
19 Parsons T.R, Maita Y. and Lalli C.M. 1984. A manual of chemical and biological methods for seawater analysis. Pergammon Press, New York
20 Capone D.G. 1982. Nitrogen fixation (acetylene reduction) by rhizosphere sediments of the eelgrass Zostera marina. Mar. Ecol. Prog. Ser. 10: 67-75   DOI
21 Duarte C.M. 1990. Seagrass nutrient content. Mar. Ecol. Prog. Ser. 67: 201-207   DOI
22 Short F.T. and Burdick D.M. 1996. Quantifying eelgrass habitat loss in relation to housing development and nitrogen loading in Waquoit Bay, Massachusetts. Estuaries 19: 730-739   DOI   ScienceOn
23 Short F.T., Burdick D.M., Granger S. and Nixon S.W. 1996. Long-term decline in eelgrass, Zostera marina L., linked to increased housing development. In: Kuo J. Phillips R.C, Walker D.l. and Kirkman H. (eds), Seagrass Biology: Proceedings of an International Workshop, pp. 291-298
24 Short F.T., Dennison W.C and Capone D.G., 1990. Phosphoruslimited growth of the tropical seagrass Syringodium filiforme in carbonate sediments. Mar. Ecol. Prog. Ser. 62: 169-174   DOI
25 Short F.T. and McRoy C.P. 1984. Nitrogen uptake by leaves and roots of the seagrass Zostera marina L. Bot. Mar. 27: 547-555   DOI
26 Shubert L.E. 1984. Algae as ecological indicator. Academic Press, London
27 Stapel J., Aarts T.L., van Duynhoven B.H.M., de Groot J.D., van den Hoogen P.H.W. and Hemminga M.A. 1996. Nutrient uptake by leaves and roots of the seagrass Thalassia hemprichii in the Spermonde Archipelago, Indonesia. Mar. Ecol. Prog. Ser. 134: 195-206   DOI
28 Lee K.-S. and Dunton KH. 1999b. Inorganic nitrogen acquisition in the seagrass Thalassia testudinum: Development of a whole-plant nitrogen budget. Limnol. Oceanogr. 44: 1204-1215   DOI
29 Lapointe B.E., Tomasko D.A. and Matzie W.R. 1994. Eutrophication and trophic state classification of seagrass communities in the Florida Keys. Bull. Mar. Sci. 54: 696-717
30 Lee K-S. and Dunton, K.H. 1999a. Influence of sediment nitrogen-availability on carbon and nitrogen dynamics in the seagrass Thalassia testudinum. Mar. Biol. 134: 217-226   DOI   ScienceOn
31 Lee K-S. and Dunton K.H. 2000. Effects of nitrogen enrichment on biomass allocation, growth, and leaf morphology of the seagrass Thalassia testudinum. Mar. Ecol. Prog. Ser. 196: 39-48   DOI
32 Tomasko D.A., Dawes C.J. and Hall M.a. 1996. The effects of anthropogenic nutrient enrichment on turtle grass (Thalassia testudinum) in Sarasota Bay, Florida. Estuaries 19: 448-456   DOI   ScienceOn
33 Udy J.W. and Dennison W.C 1997. Growth and physiological responses of three seagrass species to elevated sediment nutrients in Moreton Bay, Australia. J. Exp. Mar. Bioi. Ecol. 217: 253-277   DOI   ScienceOn
34 Valiela I. Costa J., Foreman K., Teal J.M., Howes B. and Aubrey D. 1990. Transport of groundwater-borne nutrients from watersheds and their effects on coastal waters. Biogeochem. 10: 177-197   DOI   ScienceOn
35 Valiela I., Foreman K., LaMontagne M., Hersh D., Costa J., Peckol P., DeMeo-Anderson B., D'Avazo C, Babione M., Sham C, Brawley J. and Lajtha K. 1992. Couplings of watersheds and coastal waters: sources and consequences of nutrient enrichment in Waquoit Bay, Massachusetts. Estuaries 15: 443-457   DOI   ScienceOn
36 Short F.T. 1987. Effects of sediment nutrients on seagrasses: literature review and mesocosm experiment. Aquat. Bot. 27: 41-57   DOI   ScienceOn
37 Peters G., Paznokas W. and Noyes V. 1986. A review of nutrient standards for the coastal lagoons in the San Diego region. San Diego Region Report, California Regional Water Quality Control Board, San Diego
38 Shin H. and Choi H.-K 1998. Taxonomy and distribution of Zostera (Zosteraceae) in eastern Asia, with special reference to Korea. Aquat. Bot. 60: 49-66   DOI   ScienceOn
39 Short F.T. 1983. The seagrass, Zostera marina L.: plant morphology and bed structure in relation to sediment ammonium in Izembek Lagoon, Alaska. Aquat. Bot. 16: 149-161   DOI   ScienceOn
40 Taylor D.L, Nixon S.W., Granger S.L. and Buckley B.A. 1999. Responses of coastal lagoon plant communities to levels of enrichment: a mesocosm study. Estuaries 22: 1041-1056   DOI   ScienceOn
41 Terrados J. and Williams S.L. 1997. Leaf versus root nitrogen uptake by the surfgrass Phyllospadix torreyi. Mar. Ecol. Prog. Ser.149: 267-277   DOI
42 Thursby G.B. and Harlin M.M. 1982. Leaf-root interaction in the uptake of ammonium by Zostera marina. Mar. Biol. 72: 109-112   DOI
43 Thursby G.B. and Harlin M.M. 1984. Interaction of leaves and roots of Ruppia maritima in the uptake of phosphate, ammonia and nitrate. Mar. Biol. 83: 61-67   DOI