Browse > Article
http://dx.doi.org/10.4490/ALGAE.2003.18.3.191

Putative Histone H2A Genes from a Red Alga, Griffithsia japonica  

Lee, Yoo-Kyung
Lee, Hong-Kum
Publication Information
ALGAE / v.18, no.3, 2003 , pp. 191-197 More about this Journal
Abstract
Histones are important proteins that interact with the DNA double helix to form nucleosome. Two putative histone genes, GjH2A-1 and GjH2A-2 were isolated from a red alga Griffithsia japonica. The putative open reading frame of GjH2A-1 and GjH2A-2 shared high similarity with the previously reported amino acid sequences of histone H2As. They have a motif consisting of seven amino acids A-G-L-Q-F-P-V, which matches the histone H2A motif [AC]-G-L-x-F-P-V. Phylogenetic trees were constructed from amino acid sequences of 38 histone H2As. The histone H2As were divided into two groups: major H2As and H2A.F/Z variants. The major histone H2A group consisted of animals, fungi, plants + green algae, and red algae H2A subgroups. The animal histone H2A subgroup was divided into vertebrates, echinoderms, nematodes, insects, and segmented worms H2As. The putative red algal histone genes, GjH2A-1 and GjH2A-2, constituted an independent lineage. This is the first report on red algal histone genes.
Keywords
EST(expressed sequence tag); Griffithsia japonica; Histone;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Melfi R., Palla F., Di Simone P., Alessandro c. Cali L., Anello L. and Spinelli G. 2000. Functional characterization of the enhancer blocking element of the sea urchin early histone gene cluster reveals insulator properties and three essential cis-acting sequences. J. Mol. Biol. 304: 753-763   DOI   ScienceOn
2 Noll M. and Kornberg RD. 1977. Action of micrococcal nuclease on chromatin and the location of histone H1. J. Mol. BioI. 109: 393-404   DOI
3 Pehrson J.R and Fuji RN. 1998. Evolutionary conservation of histone macroH2A subtypes and domains. Nucleic Acids Res.26: 2837-2842   DOI   ScienceOn
4 Roberts S.B., Sanicola M., Emmons S.W. and Childs G. 1987. Molecular characterization of the histone gene family of Caenorhabditis elegans. J. Mol. BioI. 196: 27-38   DOI
5 Sullivan S., Sink D.W., Trout K.L., Makalowska I., Taylor P.M., Baxevanis A.D. and Landsman D. 2002. The Histone Database. Nucleic Acids Res. 30: 341-342   DOI   ScienceOn
6 Tatusov R.L., Altschul S.F. and Koonin E.V. 1994. Detection of conserved segments in proteins: iterative scanning of sequence databases with alignment blocks. Proc. Natl. Acad. Sci. USA, 91: 12091-12095   DOI   ScienceOn
7 Chaboute M.E., Chaubet N., Gigot C and Philipps G. 1993. Histones and histone genes in higher plants: structure and genomic organization. Biochimie. 75: 523-531   DOI   ScienceOn
8 DeBry R.W. 1998. Comparative analysis of evolution in a rodent histone H2a. J. Mol. Evol. 46: 355-360   DOI   ScienceOn
9 Marzluff W.F., Gongidi P., Woods K.R., Jin J. and Maltais L.J. 2002 The human and mouse replication-dependent histone genes. Genomics 80: 487-498   DOI   ScienceOn
10 Lee Y.K., Kim S.H., Hong C.B., Chah O.-K., Kim G.H. and Lee I.K. 1998. Heat-shock protein 90 may be involved in differentiation of the female gametophytes in Griffithsia japonica (Ceramiales. Rhodophyta). J. Phycol. 34: 1017-1023   DOI   ScienceOn
11 Mcghee J.D. and Felsenfeld G. 1980. Nucleosome structure. Annu. Rev. Biochem. 49: 1115-1156   DOI   ScienceOn
12 Wainright P.O., Hinkle G., Sogin M.L. and Stickel S.K. 1993. Monophyletic origins of the metazoa: an evolutionary link with fungi. Science 260: 340-342   DOI
13 Thatcher T.H. and Gorovsky M.A. 1994. Phylogenetic analysis of the core histones H2A, H2B, H3, and H4. Nucleic Acids Res. 22: 174-179   DOI   ScienceOn
14 Thompson, J.D., Gibson T.J. Plewniak F. Jeanmougin F. and Higgins. D.G. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24: 4876-4882
15 Wang Z.F., Krasikov T., Frey M.R, Wang J., Matera A.G. and Marzluff W.F. 1996. Characterization of the mouse histone gene cluster on chromosome 13: 45 histone genes in three patches spread over 1Mb. Genome Res.6: 688-701   DOI   ScienceOn
16 Jiang W., Guo X. and Bhavanandan V.P. 1998. Histone H2A.F/Z subfamily: the smallest member and the signature sequence. Biochem. Biophys. Res. Commun. 245: 613-617
17 Ehinger A., Denison S.H. and May G.S. 1990. Sequence, organization and expression of the core histone genes of Aspergillus nidulans. Mol. Gen. Genet. 222: 416-424   DOI   ScienceOn
18 Goffeau A., Barrell B.G., Bussey H., Davis R.W., Dujon B., Feldmann H., Galibert F., Hoheisel J.D., Jacq C, Johnston M., Louis E.J., Mewes HW., Murakami Y., Philippsen P., Tettelin H. and Oliver S.G. 1996. Life with 6000 genes. Science 274: 563-567
19 Ingham L.D. and Davis F.C. 1988 Cloning and characterization of a core histone gene tandem repeat in Urechis caupo. Mol. Cell. Biol. 8: 4425-4432
20 Kornberg R. and Thomas J.O. 1974. Chromatin structure; oligomers of the histones. Science 184: 865-868   DOI
21 Kumar S., Tamura K., Jakobsen LB. and Nei M. 2001. MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17: 1244-1245   DOI   ScienceOn
22 Lee Y.K., Choi H.-G., Hong C.B. and Lee I.K. 1995. Sexual differentiation of Griffithsia japonica (Ceramiales, Rhodophyta): Nuclear ploidy level of mixed phase plants in G. japonica. J. Phycol. 31: 668-673   DOI   ScienceOn
23 Lee Y.K., Hong C.B., Soh Y. and Lee I.K. 2002. A eDNA clone for cyclophilin from Griffithsia japonica (Ceramiales, Rhodophyta) and phylogenetic analysis of cyclophilins. Mol. Cells 13: 12-20