Browse > Article
http://dx.doi.org/10.4490/ALGAE.2002.17.3.171

Ecological Study on the Toxic Microcystis in the Lower Nakdong River  

Choi, Ae-Ran (Environmental Biotechnology Laboratory, Korea Research Institute of Biosicience and Biotechnology)
Oh, Hee-Mock (Environmental Biotechnology Laboratory, Korea Research Institute of Biosicience and Biotechnology)
Lee, Jin-Ae (School of Environmental Science and Engineering, Inje University)
Publication Information
ALGAE / v.17, no.3, 2002 , pp. 171-185 More about this Journal
Abstract
The standing crop of genus Microcystis, microcystin concentrations and environmental factors were monitored at stations of the lower reaches of the Nakdong River in 1998 and 1999 during the periods of its occurrence. The Microcystis were observed from May to Octorber, and the cell density was highest at Station Seonam up to 250,000 cells${\cdot}ml^{-1}$ forming scum over the water surface. There were signigicant relationships between the standing crop of Microcystis and nitrate nitrogen, total phosphorus concentrations and Ph. Presumably these parameters were important in the succession to Microcystis dominated phytoplankton community in the summer period in the river. However, Ammonium nitrogen, phosphate phosphorus concentrations and N/P ratio were not critical factors. The Microcystis bloom was notable above $25^{\circ}C$ of surface water temperature. Microcystins were detected from May to November in the algal materials from the river. The 84.2% of algal materials with Microcystis exhibited the microcystin with the maximum of 1711.8 ${\mu}g{\cdot}g^{-1}$ dw. The microcystin concentrations in the algal materials were significantly related to the stading crop of Microcystis, which was the primary determinant factor in the toxin levle of algal materials. The concentrations were also significantly related to pH of the water column in the positive pattern.
Keywords
environmental factors; microcystin; Microcystis; Nakdong River;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ganf G.G. and Oliver R.L. 1982. Vertical separation of light and available nutrients as a factors causing replacement of green algae by blue-green algae in the plankton of a stratified lake. J. Ecol. 70: 829-844.   DOI   ScienceOn
2 Walsh K., Jones G.J. and Dunstan R.H. 1998. Effect of high irradiance and iron on volatile odour compounds in the cyanobacterium Microcystis aeruginosa. Phytochemistry 49: 1227-1239.   DOI   ScienceOn
3 Sterner R.W. 1989. Resource competition during seasonal succession toward dominance by cyanobacteria. Ecology 70: 229-245.   DOI   ScienceOn
4 Tsuji K, Naito S., Kondo F., Ishikawa N., Watanabe M.F., Suzuki M. and Harada K.-I. 1994a. Stability of microcysins from cyanobactera : effect of light on decomposition and isomerization. Environm. Sci. Technol. 28: 173-177.   DOI   ScienceOn
5 Utkilen H., Skulberg O.M., Underdal B., Gjolme N., Skulberg R. and Kotai J. 1996. The rise and fall of a toxigenic population of Microcystis aeruginosa (Cyanophyceae/Cyanobacteria) - a decade of pbservations in Lake Akersvatnet, Norway. Phycologia 35(Suppl.): 189-197.   DOI
6 Maier H.R. and Dandy G.C. 1997. Modelling cyanobacteria (blue-green algae) in the River Murray using artificial neural networks. Math. Comput. Simul. 43: 377-386.   DOI   ScienceOn
7 Watanabe M.M., Kaya K. and Takamura N. 1992. Fate of the toxic cyclic heptapeptides, the microcystins, from blooms of Microcystis (cyanobacteria) in a hypertrophic lake. J. Phycol. 28: 761-767.   DOI
8 Shirai M., Ohtake A., Sano T., Masumoto S., Sakamoto T., Sato A., Aida T., Harada K.-I., Shimada T., Suzuki M. and Nakano M. 1991. Toxicity and toxins of natural blooms and isolated strain of Microcystis spp. (cyanobacteria) and improved procedure for purification of cultures. Appl. Environ. Microbiol. 57: 1241-1245..
9 Watanabe M. 1996. Isolation, cultivation and classification of bloom-forming Microcystis in Japan. In: Watanabe M.F., Harada K.-I., Carmichael W.W. and Fujiki H. (eds), Toxic Microcysits. CRC Press, Tokyo. pp. 13-34.
10 Park M.J., Hwang l.Y., Choi A.R. and Lee J.A. 1996. A study on the blue-green algal toxin of the Sonaktong Reservoir. Algae 11: 149-154.
11 김범철, 김은경, 표동진, 신윤근. 1994. 전국 주요호수의 남조류 bloom과 algal toxin. 한국육수학회 춘계학술발표대회 요지집. pp. 202.
12 Redfield A.C. 1958. The biological control of chemical factors in the environment. Am. Sci. 46: 205-221.
13 Codd G.A. 2000. Cyanobacterial toxins, the perception of water quality, and the prioritisation of eutrophication control. Ecol. Engineer. 16: 51-60.
14 Kotak B.G., Lam A.K.Y., Prepas E.E., Kenefick S.L. and Hrudey S.E. 1995. Variability of the hepatotoxin microcystin-LR in hypereutrophic drinking water lakes. J. Phycol. 31: 248-263.   DOI   ScienceOn
15 Lee J.A., Srivastava V.C., Choi A.R., Kim W.H. and Park M.J. 1998. Composition of microcystin from cyanobacteria water blooms of the Sonaktong Reservoir, Korea. Korean J. Limnol. 31: 251-257.
16 Pelander A., Ojanpera I, Sivonen K., Himberg K., Waris M., Niinivaara K. and Vuori E. 1996. Screening for cyanobacterial toxins in bloom and strain samples by thin layer chromatography. Wat. Res. 30: 1464-1470.   DOI   ScienceOn
17 Utklen H. and Gjolme N. 1995. Iron-stimulated toxin production in Microcystis aeruginosa. Appl. Environ. Microbiol. 61: 797-800.
18 Bowling L. 1994. Occurrence and possible causes of a severe cyanobacterial bloom in Lake Cargelligo, New South Wales. Aust. J. Mar. Freshwater Res. 45: 737-745.   DOI
19 MacKintosh C., Beattia KA., Klumpp S., Cohen S. and Codd G.A. 1990. Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett. 264: 187-192.   DOI   ScienceOn
20 Wallace B.B. and Hamilton D.P. 2000. Simulation of water-bloom formation in the cyanobacterium Microcystis aeruginosa. J. Plankton Res. 22: 1127-1138.   DOI   ScienceOn
21 WHO. 1999. Toxic cyanobacteria in water. Chorus I. and Bartram J.(eds), E & FN Spon, London and New York. 416 pp.
22 Reynolds C.S. and Walsby A.E. 1975. Water blooms. Biol. Rev. 50: 437-481.   DOI
23 Lahti K., Rapala J., Fardig M., Niemela M. and Sivonen K. 1997. Persistence of cyanobacterial hepatotoxin, microcystin-LR, in particulate material and dissolved in lake water. Wat. Res. 31: 1005-1012.   DOI   ScienceOn
24 Tsuji K., Setsuda S., Watanabe T., Kondo F., Nakazawa H., Suzuki M. and Harada K.-I. 1996. Microcystin levels during 1992 - 1995 for Lake Sagami and Tsukui - Japan. Nat. Toxins 4: 189-194.   DOI   ScienceOn
25 Visser P.M., Ketelaars H.A.M. and Mur L.R. 1995. Reduced growth of the cyanobacterium Microcystis in an artificially mixed lake and reservoir. Wat. Sci. Tech. 32: 53-54.
26 APHA, AWWA, WEF. 1992. Standard methods for the examination of water and wastewater. 18th ed. American Public Health Association, Washington, DC.
27 Rapala J., Sivonen K., Lyra C. and Niemela S.I. 1997. Vatiation of microcystin, cyanobacterial hepatotoxins, in Anabaena spp. as a function of growth stimuli. Appl. Environ. Microbiol. 63: 2206-2212.
28 Christoffersen K. 1996. Ecological implications of cyanobacterial toxins in the food webs. Phycologia 35(Suppl.): 42-50.   DOI   ScienceOn
29 Takamura N., Iwakuma T. and Yasuno M. 1987. Uptake of $^{13}C$ and $^{15}N$ (ammonium, nitrate and urea) by Microcystis in Lake Kasumigaura. J. Plankton Res. 9: 151-165.   DOI
30 Jones G.J. and Orr P.T. 1994. Release and degradation of microcystin following algicide treatment of a Microcystis aeruginosa bloom in a recreational lake, as determined by HPLC and protein phosphatase inhibition assay. Wat. Res. 28: 871-876.   DOI   ScienceOn
31 조경제, 신재기. 1998. 낙동강 하류에서 동.하계 무기 N.P 영양염류와 식물플랑크톤의 동태. 한국육수학회지 31: 67-75.
32 Shapiro J. 1973. Blue-green algae: why they become dominant. Science 179: 382-384.   DOI   ScienceOn
33 Park H.-D., Watanabe M.F., Harada K.-I., Nagai H., Suzuki M., Watanabe M. and Hayashi H. 1993. Hepatotoxin (microcystin) and neurotoxin (anatoxin-a) contained in natural blooms and strains of cyanobacteria from Japanese freshwaters. Nat. Toxins 1: 353-360.   DOI   ScienceOn
34 Smith V.H. 1983. Low nitrogen to phosphorus ratios favor dominance by blue-green algae in lake phytoplankton. Science 221: 669-671.   DOI   ScienceOn
35 Harada K.-I., Tsuji K., Watanabe M.F. and Kondo F. 1996. Stability of microcystin from cyanobacteria - III. Effect of pH and temperature. Phycologia 35: 83-88.
36 Reynolds C.S. 1984. The ecology of freshwater phytoplankton. Cambridge Univ. Press, Cambridge. 384 pp.
37 Moestrup O. 1996. Toxic blue-green algae (cyanobacteria) in 1833. Phycologia 35(Suppl.): 5.   DOI
38 Robarts R.D. and Zohary T. 1987. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom-forming cyanobacteria. N.Z.J. Mar. Freshwat. Res. 21: 391-399.   DOI
39 Carmichael W.W. 1993. Disease related to freshwater blue-green algae toxins and control measures. In: Falconer I.R (ed), Algal toxins in seafood and drinking water. Academic Press, Cambridge. pp. 187-209.
40 Lee J.A., Choi A.R. and Chung I.K. 1995. Phytoplankton stoichiometry and nutrient status of the Sonaktong River. Korean J. Limnol. 10: 37-44.
41 Zohary T., Pais-Madeira A.M., Robarts R.D. and Hambright K.D. 1995. Cyanobacteria - Phytoplankton dynamics of a hypertrophic African Lake. Wat. Sci. Tech. 32: 103-104.
42 Ueno Y., Nagata S., Tsutsumi T., Hasegawa A., Yoshida F., Suttajit M., Mebs D., Putsch M. and Vasconcelos V.M. 1996. Survey of microcystins in environmental water by a highly sensitive immunoassay based on monoclonal antibody. Nat. Toixins 4: 271-276.
43 Vezie C., Brient L., Sivonen K., Bertru G., Lefeuvre J.-C. and Salkinoja-Salonen M. 1997. Occurrence of microcystin-containing cyanobacterial bloom in freshwaters of Brittany (France). Arch. Hydrobiol. 139: 401-413.
44 Wallace B.B. and Hamilton D.P. 1999. The effect of variations in irradiance on buoyancy regulation in Microcystis aeruginosa. Limnol. Oceanogr. 44: 273-281.   DOI
45 Lee J.A., Choi A.R. and Watanabe M. 1997. Morphological variations in geuns Microcystis (Cyanophyceae) in the Naktong River and its taxanomical implications. Algae 12: 147-157.
46 Shapiro J. 1984. Blue-green dominance in lakes: the role and management significance of pH and $CO_2$. Int. Revue ges. Hydrobiol. 69: 765-780.   DOI
47 Tsuji K., Naito S., Kondo F., Watanabe M.F., Suzuki S., Nakazawa H., Suzuki M., Shimada T. and Harada K.-I. 1994b. A clean up method for analysis of trace amounts of microcystins in lake water. Toxicon 32: 1251-1259.   DOI   ScienceOn
48 Vezie C., Brient L., Sivonen K., Bertru G., Lefeuvre J.-C. and Salkinoja-Salonen M. 1998. Variation of microcystin content of cyanobacterial blooms and isolation strains in Lake Grand-Lieu (France). Microbiol. Ecol. 35: 126-135.   DOI   ScienceOn
49 Harada K.-I., Ogawa K., Matsuura K, Nagai H., Murata H., Suzuki M., Itezono Y., Nakayama N., Shirai M. and Nakano M. 1991. Isolation of two toxic heptapeptide microcystins from an axenic strain of Microcystis aeruginosa, K-139. Toxicon 29: 479-489.   DOI   ScienceOn
50 Hecky R.E. and Kilham P. 1988. Nutrients limitation of phytoplankton in freshwater and marine environments: A review of recent evidence on the effects of enrichment. Limnol. Oceanogr. 33: 796-822.   DOI
51 Maier H.R., Dandy G.C. and Burch M.D. 1998. Use of artificial neural networks for modeling cyanobacteria Anabaena spp. in the River Murray, South Australia. Ecol. Model. 105: 257-272.   DOI   ScienceOn
52 Tanaka Y., Takenaka S., Matsuo H., Kitamori S. and Takiwa H. 1993. Levels of microcystin in Japanese lakes. Toxicol. Environ. Chem. 39: 21-27.   DOI   ScienceOn
53 Pick F.R. and Lean D.R.S. 1987. The role of macronutrients (C, N, P,) in controlling cyanobacterial dominance in temperate lakes. N. Z. J. Mar. Freshwat. Res. 21: 425-434.   DOI
54 정준. 1993. 한국담수조류도감. 도시출판 아카데미서적. 469 pp.
55 김명운, 김민호, 조장천, 김상종. 1995. Cyanobacteria의 증식에 따른 대청호 생태계 내의 생물군집 변화. 한국육수학회지 28: 1-9.
56 Lambert T., Boland M.P., Holmes C.F. and Hrudey S.E. 1994. Quantitation of the microcystin hepatotoxins in water at environmentally relevant concentrations with the protein phosphotase bioassay. Environ. Sci. Technol. 28: 753-755.   DOI   ScienceOn
57 Orr P.T. and Jones G.J. 1998. Relationship between microcystin production and cell division rates in nitrogen - limited Microcystis aeruginosa cultures. Limnol. Oceanogr. 43: 1604-1614.   DOI
58 Schindler D.W., Armstrong F.A.J., Holmgren S.K. and Brunskill. 1971. Eutrophication of Lake 227, experimental lake area, Northwestern Ontario, by addition of phosphate and nitrate. J. Fish. Res. Bd. Canada 28: 1763-1782.   DOI
59 Paerl H.W. 1996. A comparison of cyanobacterial bloom dynamics in freshwater, estuarine and marine environments. Phycologia 35(Suppl.): 25-35.   DOI
60 Parker D.L., Kumar H.D., Rai L.C. and Singh J.B. 1997. Potassium salts ingibit growth of the cyanobacteria Microcystis spp. in pond water and defined media: Implications for control of microcystin - producing aqautic blooms. Appl. Environ. Microbiol. 63: 2324-2329.
61 Sivonen K., Skulberg O.M., Namikoshi M., Evans W.R., Carmichael W.W. and Rinerhart K.L. 1992. Two methyl ester derivatives of microcystins, cyclic heptapeptide hepatotoxins, isolated from Anabaena flos-aquae strain CYA 83/1. Toxicon 30: 1465-1471.   DOI   ScienceOn
62 Takamura Y., Nomura K., Hagiwara T., Hiramatsu A., Yagi O. and Sudo R. 1981. Chemical composition of aoko(Microcystis) in Lake Kasumigaura and Microcystis aeruginosa in pure culture. Res. Rep. Natl. Inst. Environ. Stud., Jpn. 25: 31-46.
63 Thompson P. and Rhee G-Y. 1994. Phytoplankton responses to eutrophicatioin. In: Rai R.C., Gaur R. and Soeder C.J. (eds), Algae and Water Pollution. Advances in Limnology, Heft, 42. Springer-Verlag. pp. 125-166.
64 신재기. 1998. 낙동강 부영양화에 따른 담수조류의 생태학적 연구. 인제대학교 박사학위논문. 202 pp.
65 오희목, 김도한. 1995. 대청호 남조류 수화발생에 대한 단기적 예측. 한국육수학회지 28: 127-135.
66 이진애, 최애란, 김우현. 1999. 낙동강수계의 독성 남조류 발생 현황. 인제대학교 환경연구노트 8: 7-25.
67 정영호. 1968. 한국동식물도감. 제9권 식물편(담수조류). 문교부. 573 pp.
68 Hotzel G. and Croome R. 1994. Long-term phytoplankton monitoring of the Darling River at Burtundy, New South Wales: incidence and significance of cyanobacterial blooms. Aust. J. Mar. Freshwater Res. 45: 747-759.   DOI
69 Cho K.J., Chung I.K and Lee J.A. 1993. Seasonal dynamics of phytoplankton community in the Naktong River estuary, Korea. Korean J. Phycol. 8: 15-28.
70 Harada K.-I. 1996. Chemistry and detection of microcystins. In: Watanabe M.P., Harada K-I., Carmichael W.W. and Fujiki H. (eds), Toxic Microcystis. CRC Press, Tokyo. pp. 103-148.
71 Kaya K. and Sano T. 1999. Total microcystin determination using erythro-2-methyl-3-(methoxy-$d_3$)-4-phenylbutyric acid (MMPB-$d_3$) as the internal standard. Anal. Chim. Acta 386: 107-112.   DOI   ScienceOn
72 Kaya K. and Watanabe M.M. 1990. Microcystin composition of an axenic clonal strain of Microcystis viridis and Microcystis viridis-containing waterblooms in Japanese freshwaters. J. Appl. Phycol. 2: 173-178.   DOI
73 Klemer A.R., Cullen J.J., Mageau M.T., Hanson K.M. and Sundell R.A. 1996. Cyanobacterial buoyancy regulation: The paradoxical roles of carbon. J. phycol. 32: 47-53.   DOI
74 박혜경, 정원화, 임연택, 김종택, 류재근. 1999. 팔당호에서 남조류 및 마이크로시스틴의 경시적 변화. 한국물환경학회 춘계학술발표회 논문초록집. pp. 90-93.
75 박정원, 권덕기. 1998. 합천호에서 남조류 수화현상(녹조현상)의 초기 발생에 대한 연구. I. 수계에서 Microcystis aeruginosa Kutz.의 현존량 증가와 $K^{+}$, $ Na^{+}$,$Mg^{2+}$$ Ca^{2+}$ 농도와의 상관관계. 한국육수학회지 31: 97-102.