Browse > Article
http://dx.doi.org/10.5302/J.ICROS.2010.16.9.852

A Survey of Robotic Technologies for Diagnosis and Treatment of Prostate Cancer  

Ahn, Bum-Mo (Korea Advanced Institute of Science and Technology)
Park, Ki-Han (Korea Advanced Institute of Science and Technology)
Lee, Hyo-Sang (Korea Advanced Institute of Science and Technology)
Kim, Jung (Korea Advanced Institute of Science and Technology)
Publication Information
Journal of Institute of Control, Robotics and Systems / v.16, no.9, 2010 , pp. 852-859 More about this Journal
Abstract
Robotic techniques can be one of the promised solutions to address the prostate cancer which is one of the most important public health problems in medical fields. Despite several past and on-going dedicated researches, the systematic techniques and completed theories have not been established well. Therefore we review the state-of-the-art literature on the applications of engineering technologies with particular focus on diagnosis and treatment of prostate cancer. The current status of the elastography and systematic DRE are presented as novel diagnostic tools, and an overview of the applied technologies to address the limits of the treatment (radical prostectomy and brachytherapy) is reviewed.
Keywords
prostate cancer; engineering technique; diagnosis; treatment;
Citations & Related Records
연도 인용수 순위
  • Reference
1 B. L. Davies, S. J. Harris, E. Dibble, “Brachytherapy-an example of a urological minimally invasive robotic procedure,” Int J Medical Robotics and Computer Assisted Surgery, vol. 1, no. 1, pp. 88-96, 2004.   DOI
2 Z. Wei, G. Wan, L. Gardi, G. Mills, D. Downey, and A. Fenster, “Robot-assisted 3D-TRUS guided prostate brachytherapy: System integration and validation,” Med. Phys., vol. 31, no. 3, pp. 539-548, 2004.   DOI
3 Y. Yu, T. Podder, Y. Zhang, W. S. Ng, V. Misic, J. Sherman, L. Fu, D. Fuller, E. Messing, D. Rubens, J. Strang, and R. Brasacchio, “Robot-assisted prostate brachytherapy” MICCAI 2006, pp. 41-49, 2006.
4 S. Schostek, C. N. Ho, D. Kalanovic, and M. O. Schurr, “Artificial tactile sensing in minimally invasive surgery - a new technical approach,” Minimally invasive therapy & allied technologies, vol. 15, no. 5, pp. 296-304, 2006.   DOI   ScienceOn
5 C. Wottawa, R. E. Fan, C. E. Lewis, B. Jordan, O. Martin, S. Warren, Grundfest, and E.P. Dutson, “Laparoscopic grasper with an integrated tactile feedback system,” Complex Medical Engineering, 2009. CME. ICME International Conference on, pp. 1-5, 2009.
6 B. Kuebler, U. Seibold, and G. Hirzinger, “Development of actuated and sensor integrated forceps for minimally invasive surgery,” International Journal of Medical Robot. Computer Assisted Surgery, vol. 1, no.3, pp. 96-107, 2005.   DOI
7 J. Dargahi, M. Parameswaran, and S. Payandeh, “A micromachined piezoelectric tactile sensor for an endoscopic grasper - theory, fabrication and experiments,” Journal of microelectromechanical systems, vol. 9, no. 3, pp. 329-335, Sep. 2000.   DOI
8 J. Peirs, J. Clijnen, D. Reynaerts, H. V. Brussel, P. Herijgers, B. Corteville, and S. Boone, “A micro optical force sensor for force feedback during minimally invasive robotic surgery,” Sensors and Actuators A, vol. 115, no. 2-3, pp. 447-455, Sep. 2004.   DOI
9 G. Salomon, J. Kollerman, I. Thederan, F. K. H. Chun, L. Budaus, T. Schlomm, H. Isbarn, H. Heinzer, H. Huland, and M. Graefen, “Evaluation of prostate cancer detection with ultrasound real-time elastography: A comparison with step section pathological analysis after radical prostatectomy,” European Urology, vol. 54, no. 6, pp. 1354-1362, 2008.   DOI
10 K. König, U. Scheipers, A. Pesavento, A. Lorenz, H. Ermert, and T. Senge, “Initial experiences with real-time elastography guided biopsies of the prostate,” The Journal of Urology, vol. 174, pp. 115-117, 2005.   DOI   ScienceOn
11 M. Tanaka, M. Furubayashi, Y. Tanahashi, and S. Chonan, “Development of an active palpation sensor for detecting prostatic cancer and hypertrophy,” Smart Mater Struct, vol. 9, pp. 878-884, 2000.   DOI
12 L. Potters, C. Morgenstern, E. Calugaru, P. Fearn, A. Jassal, J. Presser, and E. Mullen, “12-year outcomes following permanent prostate brachytherapy in patients with clinically localized prostate cancer,” The Journal of Urology, vol. 173, pp. 1562-1566, 2005.   DOI
13 S. J. Khaksar, R.W. Laing, A. Henderson, P. Sooriakumaran, D. Lovell, and S. E. M. Langley, “Biochemical (prostate-specific antigen) relapse-free survival and toxicity after 125I low-doserate prostate brachytherapy,” BJU International, vol. 98, pp. 1210-1215, 2006.   DOI
14 J. Crook, N. Fleshner, C. Roberts, and G. Pond, “Long-term urinary sequelae following 125Iodine prostate brachytherapy,” The Journal of Urology, vol. 179, pp. 141-146, 2008.
15 M. Tanaka, H. Nesori, and Y. Tanahashi, “Development of an active palpation sensor wearable on a finger for detecting prostate cancer and hypertrophy,” Ann of NanoBME, vol. 1, pp. 141-147, 2008.
16 L. Pallwein, F. Aigner, R. Faschingbauer, E. Pallwein, G. Pinggera, G. Bartsch, G. Schaefer, P. Struve, and F. Frauscher, “Prostate cancer diagnosis value of real time elastography,” Abdom Imaging, vol. 33, pp. 729-735, 2008.   DOI
17 A. Krieger, R. C. Susil, C. Menard, J. A. Coleman, G. Fichtinger, E. Atalar, and L. L. Whitcome, “Design of a novel MRI compatible manipulator for image guided prostate interventions,” IEEE Transactions on Biomedical Engineering, vol. 52, no. 2, pp. 306-313, Feb. 2005.   DOI
18 J. Arata, M. Mitsuishi, S. Warisawa, K. Tanaka, T. Yoshizawa, and M. Hashizume, “Development of a dexterous minimallyinvasive surgical system with augmented force feedback capability,” IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3738-3743, 2005.
19 J. Ding, K. Xu, R. Goldman, P. Allen, D. Fowler, and N. Simaan, “Design, Simulation and Evaluation of Kinematic Alternatives for Insertable Robotic Effectors Platforms in Single Port Access Surgery,” Proceedings of the IEEE International Conference on Robotics and Automation, pp. 1053-1058, 2010.
20 N. Miyanaga, H. Akaza, M. Yamakawa, T. Oikawa, N. Sekido, S. Hinotsu, K. Kawai, T. Shimazui, and T. Shina, “Tissue elasticity imaging for diagnosis of prostate cancer : A preliminary report,” International Journal of Urology, vol. 13, no. 12, pp. 1514-1518, 2006.   DOI
21 K. Hoyt, B. Castaneda, M. Zhang, P. Nigwekar, P. A. di Sant’Agnese, J. V. Joseph, J. Strang, D. J. Rubens, and K. J. Parker, “Tissue elasticity properties as biomarkers for prostate cancer,” Cancer Biomarkers, vol. 4, pp. 213-225, 2008.   DOI
22 F. Aigner, L. Pallwein, A. Pelzer, G. Schaefer, G. Bartsch, D. Z. Nedden, and F. Frauscher, “Value of magnetic resonance imaging in prostate cancer diagnosis,” World J Urol., vol. 25, pp. 351-359, 2007.   DOI
23 C. G. L. Cao, M. Zhou, D. B. Jones, and S. D. Schwaitzberg, “Can surgeons think and operate with haptics at the same time?,” Journal of Gastrointest Surg, vol. 11, no. 11, pp. 1564-1569, Nov. 2007.   DOI
24 A. Manduca, T. E. Oliphant, M. A. Dresner, J. L. Mahowald, S. A. Kruse, E. Amromin, J. P. Felmlee, J. F. Greenleaf, and R. L. Ehman, “Magnetic resonance elastography: non-invasive mapping of tissue elasticity,” Med Image Anal., vol. 5, no. 4, pp. 237-254, 2001.   DOI
25 S. Maderwald, K. Uffmann, C. J. Galban, A. de Greiff, and M. E. Ladd, “Accelerating MR elastography: a multiecho phasecontrast gradient-echo sequence,” J Magn Reson Imaging ,vol. 23, no. 5, pp. 774-780, 2006.   DOI
26 K. S. Ross, H. B. Carter, J. D. Pearson, and H. A. Guess, “Comparative efficiency of prostate-specific antigen screening strategies for prostate cancer detection,” JAMA, vol. 284, pp. 1399-1405, 2000.   DOI
27 American Cancer Society, “Cancer facts and figures 2008,” Atlanta, Ga: American Cancer Society, 2008.
28 A. Jemal, R. Siegel, E. Ward, Y. Hao, J. Xu, T. Murray, and M. J. Thun, “Cancer statistics,” CA Cancer Journal for Clinicians, vol. 58, pp. 71-96, 2008.   DOI
29 S. K. Park, L. C. Sakoda, D. Kang, A. P. Chokkalingam, E. Lee, H. R. Shin, Y. O. Ahn, M. H. Shin, C. W. Lee, D. H. Lee, A. Blair, S. S. Devesa, and A. W. Hsing, “Rising prostate cancer rates in South Korea,” The Prostate, vol. 66, no. 12, pp. 1285-1291, Sep. 2006.   DOI
30 L. S. Lim and K. Sherin, “Screening for prostate cancer in U.S. men ACPM position statement on preventive practice,” Am J Prev Med, vol. 34, pp. 164-170, 2008.   DOI
31 National Cancer Information Service, http://www.cancer.gov/aboutnci/cis
32 H. S. Bassan, R. V. Patel, and M. Moallem, “A novel manipulatior for percutaneous needle insertion: Design and experimentation, IEEE/ASME Transactions on Mechatronics, vol. 14, no. 6, pp. 746-761, Dec. 2009.   DOI
33 M. Muntener, A. Patriciu, D. Petrisor, D. Mazilu, H. Bagga, L. Kavoussi, K. Cleary, and D. Stoianovici, “Magnetic resonance imaging compatible robotic system for fully automated brachytherapy seed placement,” Urology, vol. 68, pp. 1313-1317, 2006.   DOI
34 D. Stoianovici, D. Song, D. Petrisor, D. Ursu, D. Mazilu, M. Mutener, M. Schar, and A. Patriciu, “MRI stealth robot for prostate interventions,” Minimally Invasive Therapy, vol. 16, no. 4, pp. 241-248, 2007.   DOI
35 G. Fichtinger, J. P. Fiene, C. W. Kennedy, G. Kronreif, I. Iordachita, D. Y. Song, E. C. Burdette, and P. Kazanzides, “Robotic assistance for ultrasound-guided prostate brachytherapy,” Medical Image Analysis. vol. 12, pp. 535-545, 2008.   DOI
36 K. M, Pondman, J. J. Futterer, B. T. Haken, L. J. S. Kool, J. A. Witjes, T. Hambrock, K. J. Macuar, and J. O. Barentsz, “MRguided biopsy of the prostate: an overview of techniques and a systematic review,” European urology, vol. 54, pp. 517-527, 2008.   DOI
37 C. R. Wagner and R. D. Howe, “Force feedback benefit depends on experience in multiple degree of freedom robotic surgery task,” IEEE Transactions on Robotics, vol. 23, no. 6, pp. 1235-1240, Dec. 2007.   DOI
38 M. Mahvash, J. Gwilliam, R. Agarwal, and A. Okamura, “Force-feedback surgical teleoperator: controller design and palpation experiments,” Proc. of the16th Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, pp. 465-471, 2008.
39 E. Park and A. M. Maniatty, “Shear modulus reconstruction in dynamic elastography: time harmonic case,” Phys Med Biol., vol. 51, no. 15, pp. 3697-3721, 2006.   DOI
40 S. Papazoglou, J. Rump, J. Braun, and I. Sack, “Shear wave group velocity inversion in MR elastography of human skeletal muscle,” Magn Reson Med., vol. 56, no. 3, pp. 489-497, 2006.   DOI
41 A. J. Romano, P. B. Abraham, P. J. Rossman, J. A. Bucaro, and R. L. Ehman, “Determination and analysis of guided wave propagation using magnetic resonance elastography,” Magn Reson Med., vol. 54, no. 4, pp. 893-900, 2005.   DOI
42 K. J. Glaser, J. P. Felmlee, A. Manduca, and R. L. Ehman, “Shear stiffness estimation using intravoxel phase dispersion in magnetic resonance elastography,” Magn Reson Med., vol. 50, no. 6, pp. 1256-1265, 2003.   DOI
43 T. E. Oliphant, A. Manduca, R. L. Ehman, and J. F. Greenleaf, “Complex-valued stiffness reconstruction for magnetic resonance elastography by algebraic inversion of the differential equation,” Magn Reson Med., vol. 45, no. 2, pp. 299-310, 2001.   DOI
44 B. Ahn, J. Kim, E. I. S. Lorenzo, K. Rha, and H. Kim, “Mechanical property characterization of prostate cancer using a minimally motorized indenter in an Ex vivo indentation experiment,” Urology, In Press, 2010.
45 J. Ophir, I. Cespedes, H. Ponnekanti, Y. Yazdi, and X. Li, “Elastography: a quantitative method for imaging the elasticity of biological tissues,” Ultrasonic Imaging, vol. 13, pp. 111-134, 1991.   DOI
46 J. Braun, K. Braun, and I. Sack, “Electromagnetic actuator for generating variably oriented shear waves in MR elastography,” Magn Reson Med, vol. 50, no. 1, pp. 220-222, 2003.   DOI
47 O. Bieri, S. Maderwald, M. E. Ladd, and K. Scheffler, “Balanced alternating steady-state elastography,” Magn Reson Med., vol. 55, no. 2, pp. 233-241, 2006.   DOI
48 Q. C. Chan, G. Li, R. L. Ehman, R. C. Grimm, R. Li, and E. S. Yang, “Needle shear wave driver for magnetic resonance elastography,” Magn Reson Med, vol. 55, no. 5, pp. 1175-1179, 2006.   DOI
49 M. Suga, T. Matsuda, K. Minato, O. Oshiro, K. Chihara, J. Okamoto, O. Takizawa, M. Komori, and T. Takahashi, “Measurement of in-vivo local shear modulus by combining multiple phase offsets MR elastography,” Medinfo, vol. 10, pp. 933-937, 2001.
50 T. Wu, J. P. Felmlee, J. F. Greenleaf, S. J. Riederer, and R. L. Ehman, “MR imaging of shear waves generated by focused ultrasound,” Magn Reson Med., vol. 43, no. 1, pp. 111-115, 2000.   DOI
51 C. J. Lewa, M. Roth, L. Nicol, J. M. Franconi, and J. D. de Certaines, “A new fast and unsynchronized method for MRI of viscoelastic properties of soft tissues,” J Magn Reson Imaging, vol. 12, no. 5, pp. 784-789, 2000.   DOI
52 L. S. Borden Jr., J. L. Wright, J. Kim, K. Latchamsetty, and C. R. Porter, “An abnormal digital rectal examination is an independent predictor of Gleason ${\geq}7$ prostate cancer in men undergoing initial prostate biopsy: a prospective study of 790 men,” Br J Urol, vol. 99, pp. 559-563, 2007.   DOI   ScienceOn
53 G. Fichtinger, J. Fiene, C. W. Kennedy, G. Kronreif, I. I. Iordachita, D. Y. Song, E. C. Burdette, and P. Kazanzides, “Robotic assistance for ultrasound-guided prostate brachytherapy,” Medical image analysis, vol. 12, pp. 535-545, 2008.   DOI