Browse > Article
http://dx.doi.org/10.9719/EEG.2022.55.6.701

A Study on the Distribution Characteristics and Countermeasures of Concentrations of Ambient PM10 and PM2.5 in Yangju, South Korea  

Dohun Lim (Korea Natural Environment Institute)
Yoonjin Lee (Department of general education, Konyang University)
Publication Information
Economic and Environmental Geology / v.55, no.6, 2022 , pp. 701-716 More about this Journal
Abstract
This study investigated the distribution behaviors of PM2.5 and PM10 at two air quality monitoring sites, Go-eup (GO) and Backseokeup (BS), located in Yangju City, South Korea. The amounts of emissions sources of pollutants were analyzed based on the Clean Air Policy Support System (CAPSS), and the contribution rates of neighboring cities were enumerated in Yangju. Yangju has a geological basin structure, and it is a city with mixed urban and rural characteristics. The emission concentration of particulate matter was affected by geological and seasonal factors for all sites observed in this study. Therefore, these factors should be considered when establishing policies related to particulate matter. Because the official GO and BS station sites in Yangju are both situated in the southern part of the city, the representativeness of both stations was checked using correlation analysis for the measurement of PM2.5 and PM10 by considering two more sites-those of Bongyang-dong (BY) and the Gumjun (GJ) industrial complex. The data included discharge amounts for business types 4 and 5, which were not sufficiently considered in the CAPSS estimates. Because the 4 and 5 types of businesses represent over 92.6% of businesses in this city, they are workplaces in Yangju that have a significant effect on the total air pollutant emission. These types of businesses should be re-inspected as the main discharge sources in industry, and basic data accumulation should be carried out. Moreover, to manage the emission of particulate matter, attainable countermeasures for the main sources of these emissions should be prepared in a prioritized fashion; such countermeasures include prohibition of backyard burning, supervision of charcoal kilns, and management of livestock excretions and fugitive dust in construction sites and on roads. The contribution rates by neighboring cities was enumerated between 6.3% and 10.9% for PM2.5. Cooperation policies are thought to be required with neighboring cites to reduce particulate matter.
Keywords
PM-10; PM-2.5; CAPSS; Ambient particulate matter; Yangju City; Pollution source;
Citations & Related Records
Times Cited By KSCI : 6  (Citation Analysis)
연도 인용수 순위
1 Baron, P.A. and Willeke, K. (2001) Aerosol measurement: principles, technology, and applications, 2nd ed., John Wiley & Sons Inc.. New York. doi: 10.1002/9781118001684.   DOI
2 Cavanagh, J.E., Zawar-Reza, P. and Wilson, J.G. (2009). Spatial attenuation of ambient particulate matter air pollution within an urbanized native forest patch. urban for. Urban Forestry & Urban Green, v.8, p.21-30. doi: 10.1016/j.ufug.2008.10.002.   DOI
3 Choi, J., Park, R.J., Lee, H.M., Lee, S., Jo, D.S., Jeong, J. I., Henze, D.K., Woo, J.H., Ban, S.J., Lee, M. D., Lim, C.S., Park, M.K., Shin, H.J., Cho, S., Peterson, D. and Song, C.K. (2019) Impacts of local vs. trans-boundary emissions from different sectors on PM 2.5 exposure in South Korea during the KORUS-AQ campaign. Atmospheric Environment, v.203, p.196-205. doi: 10.1016/j.atmosenv.2019.02.008.   DOI
4 Eum, J.I. and Kim, H.K. (2020) The impacts of industrial characteristics of cities on fine dust levels. Journal of Environmental Science International, v.29, p.445-455. doi: 10.5322/JESI.2020.29.5.445   DOI
5 Fraser, M.P., Yue, Z.W. and Buzcu, B. (2003) Source apportionment of fine particulate matter in Houston, TX, using organic molecular markers. Atmospheric Environment, v.37, p.2117-2123. doi: 10.1016/S1352-2310(03)00075-X.   DOI
6 Gastaldi, M., Meneguzzer, C., Rossi, R., Lucia, L.D. and Gecchele, G. (2014) Evaluation of air pollution impacts of a signal control to roundabout conversion using microsimulation. Transportation Research Procedia, v.3, p.1031-1040. doi: 10.1016/j.trpro.2014.10.083   DOI
7 Giri, D., Krishna, M.V. and Adhikary, P.R. (2008) The influence of meteorological conditions on PM10 concentrations in Kathmandu valley. International Journal of Environmental Research, v.2, 49-60. doi: 10.22059/IJER.2010.175.   DOI
8 Gong, J.Y., Shim, C.S., Choi, K.C. and Gong, S.Y. (2021) The Characteristics of PM2.5 Pollution and Policy Implications in Chungcheong Region (2021), Journal of Korean Society of Environmental Engineers. v.43, p.407-418. doi: 10.4491/KSEE.2021.43.6.407.   DOI
9 Jeon, B. and Hwang, Y.S. (2014) Characteristics of metallic and ionic concentrations in PM10 and PM2.5 in Busan. Journal of Korean Society for Atmospheric Environment, v.23, p.819-827. doi: 10.5322/JESI.2014.5.819   DOI
10 Jeon, B.I. (2012) Meteorological characteristics of the wintertime high PM10 concentration episodes in Busan, Journal of Environmental Science International, v.21, p.815-824. doi: 10.5322/jes.2012.21.7.815.   DOI
11 Jin, J.K. and Jin, J.I. (2021), A Study on the effect of traffic congestion on particulate matter concentration in Seoul : big data approach, v.56, 121-136. doi: 10.17208/jkpa.2021.02.56.1.121.   DOI
12 Kang, C.M. Lee, H.S. Kang, B.W., Lee S.K. and Sunwoo,Y. (2004) Chemical characteristics of acidic gas pollutants and PM2.5 species during hazy episodes in Seoul, South Korea. Atmospheric Environment, v.38, p.4749-4760, doi: 10.1016/j.atmosenv.2004.05.007.   DOI
13 Kang, C.M. Park, S.K. Sunwoo, Y. Kang, B.W. and Lee, H.S. (2006) Respiratory health effects of fine particles (PM2.5) in Seoul. Journal of Korean Society for Atmospheric Environment, v.22, p.554-563.
14 Keuken, P.M., Jonkers, S., Wilmink, R.I. and Wesseling, J. (2010) Reduced NOx and PM10 emissions on urban motorways in the Netherlands by 80 km/h speed management. Science of the Total Environment, v.408, 2517-2526. doi: 10.1016/j.scitotenv.2010.03.008.   DOI
15 Kim, J.Y. Youn, D.O. Kim, Y.H. and Shin, W. J. (2019) A Study on characteristics and Countermeasures of fine dust discharge sources in Cheongju. Journal of the Association of Korean Geographers, v.8, p.399-415. doi: 10.25202/JAKG.8.3.5   DOI
16 Kim, M.K., Jung, W.S., Lee, H.W., Do, W.G., Cho, J.G. and Lee, K.O. (2013) Analysis on meteorological factors related to the distribution of PM10 concentration in Busan. Journal of Environmental Science International, v.22. p.1213-1226 doi: 10.5322/JESI.2013.22.9.1213.   DOI
17 Lee, Y.C. and Hills, P.R. (2003), Cool season pollution episodes in Hong Kong. Atmospheric Environment, v.37. p.2927-2939. doi: 10.1016/S1352-2310(03)00296-6.   DOI
18 Lee, C.T. Chuang, M.T. Chan, C.C. Cheng, T.J. and Huang, S.L. (2006) Aerosol characteristics from the Taiwain aerosol supersite in the Asian yellow-dust periods of 2002. Atmospheric Environment, v.40, 3409-3418. doi: 10.1016/j.atmosenv.2005.11.068   DOI
19 Lee, K.B. Kim, S.D. and Kim, D.S. (2015) Ion compositional existence forms of PM10 in Seoul area. Journal of Korean Society of Environmental Engineers, v.37, p.197-203, doi: 10.4491/ksee.2015.37.4.197.   DOI
20 Lee. K.H., Kim. S.M., Kim, K.S. and Hu, C.G. (2020) Chemical mass composition of ambient aerosol over Jeju City. Journal of Environmental Science International, v.29, p.495-506. doi: 10.5322/JESI.2020.29.5.495.   DOI
21 Lighty, J.S. Veranth, J.M. and Sarofim, A.F. (2000) Combustion aerosols: Factors govering their size and composition and implications to human health. Journal of Air Waste Management Association, v.50, p.1565-1618. doi: 10.1080/10473289.2000.10464197.   DOI
22 Min, H., Ling, Y.H., Yuan, H.Z., Min, W., Kim, Y.P. and Moon, K.C. (2002) Seasonal variation of ionic species in fine particles at Qingdao, China. Atmospheric Environment, v.36, p.5853-5859. doi: 10.1016/S1352-2310(02)00581-2.   DOI
23 Mouli, P.C., Mohan, S.V. and Reddy, S.J (2005) Rainwater chemistry at a regional representative urban site: Influence of terrestrial sources on ionic composition. Atmospheric Environment, v.39, p.999-1008. doi: 10.1016/j.atmosenv.2004.10.036   DOI
24 Nguyen. T., Yu, X.X., Zhang, Z.M., Liu, M.M. and Liu, X.H. (2015) Relationship between types of urban forest and PM2.5 capture at three growth stages of leaves. Journal of Environmental Sciences, v.27, p.33-41. doi: 10.1016/j.jes.2014.04.019.   DOI
25 Park, S.Y. (2021) Local-Level Analyses of Atmospheric PM10 and PM2.5 Concentrations in Busan Metropolitan City Based on a Multi-Scale Approach. The Geographical Journal of Korea, v.55, p.321-334. doi: 10.22905/kaopqj.2021.55.3.6.   DOI
26 Ouyang, W., Guo, B., Cai, G., Li, Q., Han, S., Liu, B. and Liu, X. (2015) The washing effect of precipitation on particulate matter and the pollution dynamics of rainwater in downtown Beijing. Science of the Total Environment, v.505, p.306-314. doi: 10.1016/j.scitotenv.2014.09.062.   DOI
27 Park, H.M., Byen, M.H., Kim, T.Y., Kim, J.J. and Yang, M.J. (2020) The washing effect of precipitation on PM10 in the atmosphere and rainwater quality based on rainfall intensity. The Korean Society of Remote Sensing, v.36, p.1669-1679. doi: 10.7780/kjrs.2020.36.6.3.4   DOI
28 Park, J.Y. and Lim, H.J. (2006) Characteristics of water soluble ions in fine particles during the winter and spring in Daegu. Journal of Korean Society for Atmospheric Environment, v.22, p.627-641.
29 Querol, X., Alastuey, A., Rodriguez, S., Viana, M. M., Artinano, B., Salvador, P., Mantilla, E., Garcia Do Santos, S., Fernandez Patier, R., De La Rosa, J., Sanchez, De La Campa, A. and Menendez, M. (2004) Levels of Particulate Matter in rural, urban and industrial sites in Spain. Science of Total Environment, v.334-335, p.359-376. doi: 10.1016/j.scitotenv.2004.04.036.   DOI
30 Ramanathan, V. Crutzen, P.J. Kiehl, J.T. and Rosenfeld, D. (2001) Aerosols, climate, and the hydrological cycle. Science, v.294, p.2119-2124. doi: 10.1126/science.1064034.   DOI
31 Shahid, I., Alvi, M.U., Shahid, M.Z., Alam, K. and Chishtie, F. (2018), Source apportionment of PM10 at an urban site of a south Asian mega city. Aerosol and Air Quality Research, v.18, p.2498-2509. doi: 10.4209/aaqr.2017.07.0237   DOI
32 Whitby, K.T. (1978) The physical characteristics of sulfur aerosols. Atmospheric Environment, v.12, p.135-159. doi: 10.1016/0004- 6981(78)90196-8.   DOI
33 Spengler, J.D., Brauer, M. and Koutrakis, P. (1990) Acid air and health. Environmental Science Technology, v.24, p.946-956. doi: 10.1007/s13280-019-01244-4.   DOI
34 Suzumura, M., Kokubun, H. and Arata, N. (2004) Distribution and characteristics of suspended particulate matter in a heavy eutrophic estuary, Tokyo Bay, Japan. Marine Pollution Bulletin, v.49, p.496-503. doi: 10.1016/j.marpolbul.2004.03.002.   DOI
35 Tecer, L.H., Suren, P., Alagha, O., Karaca, F. and Tuncel, G. (2008) Effect of meteorological parameters on fine and coarse paticulate matter mass concentration in a coal-mining area in Zonguldak, Turkey. Journal of the Air & Waste Management Association, v.58, p.545-552. doi: 10.3155/1047-3289.58.4.543.   DOI
36 Zwack, M.L., Paciorek, J.C., Spengler, D.J. and Levy, I.J. (2011) Characterizing local traffic contributions to particulate air pollution in street canyons using mobile monitoring techniques. Atmospheric Environment, v.45, p.2507-2514. doi: 10.1016/j.atmosenv.2011.02.035.   DOI