Browse > Article
http://dx.doi.org/10.9719/EEG.2022.55.3.295

Depositional Processes of Pyroclastic Density Currents in Lacustrine Environments: An Example from the Cretaceous Jeonggaksan Formation in Danjang-myeon, Miryang City  

Gihm, Yong Sik (Department of Geology, Kyungpook National University)
Park, Seung-Ik (Department of Geology, Kyungpook National University)
Publication Information
Economic and Environmental Geology / v.55, no.3, 2022 , pp. 295-307 More about this Journal
Abstract
We studied the Cretaceous Jeonggaksan Formation to determine depositional processes of pyroclastic density currents entering into the lacustrine environments. This formation is composed largely of sandstone-mudstone couplets and (tuffaceous) normally graded sandstones deposited in lacustrine environments, interbedded with two pyroclastic beds: welded massive lapilli tuff and normally graded lapilli tuff. The welded massive lapilli tuff (10 m thick) is composed of poorly sorted, structureless lapilli supported by a welded ash matrix. The normally graded lapilli tuff (4 m thick) is characterized by moderately to well sorted natures and multiple normally graded divisions in the lower part of the bed with internal boundaries. The contrasting depositional features between these lapilli tuff are suggestive of different physical characteristics and depositional processes of pyroclastic density currents in the lake. Overall poorly sorted and massive natures of the thick, welded massive lapilli tuff are interpreted to have been formed by rapid settling of pyroclastic sediments from highly concentrated and sustained pyroclastic density currents. In this case, the pyroclastic density currents were able to displace lake water from shoreline and the pyrolclastic density currents preserved their own heat except for frontal parts of the currents. As a result, welded textures can be formed despite entrance of pyroclastic density currents into the lake. The internal boundaries of the normally graded lapilli tuff reflect unsteady natures of the pyroclastic density currents at the time of the deposition and the pyroclastic density currents can not provide sufficient pressure to displace lake water. As a consequence, the pyroclastic density currents transformed into water-saturated turbidity currents, forming relatively well sorted, normally graded lapilli tuff.
Keywords
Yucheon Group; lapilli tuff; welded texture; volcaniclastics; pyroclastic density currents; sediment concentration;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Sohn, Y.K. and Chough, S.K. (1989) Depositional processes of the Suwolbong tuff ring, Cheju Island (Korea). Sedimentology, v.36, p.837-855. doi: 10.1111/j.1365-3091.1989.tb01749.x.   DOI
2 White, J.D.L. (2000) Subaqueous eruption-fed density currents and their deposits. Precambrian Res. v.101, p.87-109. doi: 10.1016/S0301-9268(99)00096-0.   DOI
3 Allen, P.A. and Allen, J.R. (2013) Basin Analysis: Principles and Application to Petroleum Play Assessment. 3rd (ed.), Wiley-Blackwell, Oxford, 619p.
4 Brown, R.J., Branney, M.J., Maher, C. and Davila-Harris, P. (2010) Origin of accretionary lapilli within ground-hugging density currents: evidence from pyroclastic couplets on Tenerife. Geol. Soc. Am. Bull., v.122, p.305-320, doi: 10.1130/B26449.1.   DOI
5 Carey, S., Sigurdsson, H., Mandeville, C. and Bronto, S. (1996) Pyroclastic flows and surges over water: An example from the 1883 Krakatau eruption. Bull. Volcanol., v.57, p.493-511. doi: 10.1007/BF00304435.   DOI
6 Cas, R.A.F. and Wright, J.V. (1991) Subaqueous pyroclastic flows and ignimbrites: An assessment. Bull. Volcanol., v.53, p.357-380. doi: 10.1007/BF00280227.   DOI
7 Choi, S.J., Kim Y.B. and Gihm, Y.S. (2016) Geological report of the Bungye, Jaeundo, Bigeumdo, and Gihwado Sheets (1:50,000). Korea Institute of Geoscience and Mineralogy Resources. Daejeon, Korea, p.69 (in Korean with English abstract).
8 Chough, S.K. and Sohn, Y.K. (2010) Tectonic and sedimentary evolution of a Cretaceous continental arc-backarc system in the Korean peninsula: New view. Earth-Sci. Rev., v.101, p.225-249. doi: 10.1016/j.earscirev.2010.05.004.   DOI
9 Di Capua, A., Barilaro, F., Szepesi, J., Lukacs, R., Gal, P., Norini, G., Sulpizio, R., Soos, I., Harangi, S. and Groppelli, G. (2021) Correlating volcanic dynamics and the construction of a submarine volcanogenic apron: An example from the Badenian (Middle Miocene) of North-Eastern Hungary. Mar. Petrol. Geol., v.126, 104944. doi: 10.1016/j.marpetgeo.2021.104944.   DOI
10 Lee, D.W. (1999) Strike-slip fault tectonics and basin formation during the Cretaceous in the Korean Peninsula. Isl. Arc, v.8, p.218-231. doi: 10.1046/j.1440-1738.1999.00233.x.   DOI
11 Allen, S.R., Freundt, A. and Kurokawa, K. (2012) Characteristics of submarine pumice-rich density current deposits sourced from turbulent mixing of subaerial pyroclastic flows at the shoreline: field and experimental assessment. Bull. Volcanol., v.74, p.657-675. doi: 10.1007/s00445-011-0553-1.   DOI
12 Schumacher, R. and Schmincke, H.U. (1995) Models for the origin of accretionary lapilli. Bull. Volcanol., v.56, p.626-639. doi: 10.1007/BF00301467.   DOI
13 Lee, S.H. and Chough, S.K. (1999) Progressive changes in sedimentary facies and stratal patterns along the strike-slip margin, northeastern Jinan Basin (Cretaceous), southwest Korea: Implications for differential subsidence. Sediment. Geol., v.123, p.81-102. doi: 10.1016/S0037-0738(98)00087-6.   DOI
14 Mandeville, C.W., Carey, S. and Sigurdsson, H. (1996) Sedimentology of the Krakatau 1883 submarine pyroclastic deposits. Bull. Volcanol., v.57, p.512-529. doi: 10.1007/BF00304436.   DOI
15 McPhie, J., Doyle, M. and Allen, R. (1993) Volcanic Textures: A Guide to the Interpretation of Textures in Volcanic Rocks. University of Tasmania, Hobart, p.198.
16 Edmonds, M. and Herd, R.A. (2005) Inland-directed base surge generated by the explosive interaction of pyroclastic flows and seawater at Soufriere Hills Volcano, Montserrat. Geology, v.33, p.245-248. doi: 10.1130/G21166.1.   DOI
17 Gihm, Y.S. and Hwang, I.G. (2014) Syneruptive and intereruptive lithofacies in lacustrine environments: the Cretaceous Beolkeum member, Wido Island, Korea. J. Volcanol. Geotherm. Res., v.273, p.15-32. doi: 10.1016/j.jvolgeores.2014.01.004.   DOI
18 Anderson, R.Y. and Dean, W.E., (1988) Lacustrine varve formation through time. Palaeogeogr. Palaeoclimatol. Palaeoecol., v.62, p.215-235. doi: 10.1016/0031-0182(88)90055-7.   DOI
19 Sturm, M. and Matter, A. (1978) Turbidites and Varves in Lake Brienz (Switzerland): Deposition of Clastic Detritus by Density Currents. In Matter, A. and Tucker, M.E., Modern and Ancient Lake Sediments. Spec. Publ. Int. Assoc. Sediment., Blackwell Science, Oxford, v.2. p.147-168. doi: 10.1002/9781444303698.ch8.
20 Trofimovs, J., Amy, L., Boudon, G., Deplus, C., Doyle, E., Fournier, N., Hart, M.B., Komorowski, J.C., Le Friant, A., Lock, E.J., Pudsey, C., Ryan, G., Sparks, R.S.J. and Talling, P.J. (2006) Submarine pyroclastic deposits formed at the Soufriere Hills volcano, Montserrat (1995-2003): what happens when pyroclastic flows enter the ocean? Geology, v.34, p.549-552. doi: 10.1130/G22424.1.   DOI
21 Aoki, K., Isozaki, Y., Kofukuda, D., Sato, T., Yamamoto, A., Maki, K., Sakata, S. and Hirata, T. (2014) Provenance diversification within an arc-trench system induced by batholith development: The Cretaceous Japan case. Terra Nova, v.26, p.139-149. doi: 10.1111/ter.12080.   DOI
22 Freundt, A. (2003) Entrance of hot pyroclastic flows into the sea: experimental observations. Bull. Volcanol., v.65, p.144-164. doi: 10.1007/s00445-002-0250-1.   DOI
23 Druitt, T.H. (1995) Settling behaviour of concentrated dispersions and some volcanological applications. J. Volcanol. Geotherm. Res., v.65, p.27-39. doi: 10.1016/0377-0273(94)00090-4.   DOI
24 Kim, S.B., Chough, S.K. and Chun, S.S. (2003) Tectonic controls on spatio-temporal development of depositional systems and generation of fining-upward basin fills in a strike-slip setting: Kyokpori Formation (Cretaceous), south-west Korea. Sedimentology, v.50, p.639-665. doi: 10.1046/j.1365-3091.2003.00568.x.   DOI
25 Kwon, C.W., Ko, K. and Koh, H.J., (2015) Geological report of the Beopseongpo, Anmado, Songido, Bunamgundo, and Imjado Sheets (1:50,000). Korea Institute of Geoscience and Mineralogy Resources. Daejeon, Korea, p.57 (in Korean with English abstract).
26 Gilbert, J.S. and Lane, S.J. (1994) The origin of accretionary lapilli. Bull. Volcanol., v.56, p.398-411. doi: 10.1007/BF00326465.   DOI
27 Wang, Q., Li, X.-H., Jia, X.-H., Wyman, D., Tang, G.-J., Li, Z.-X., Ma, L., Yang, Y.-H., Jiang, Z.-Q. and Gou, G.-N. (2012) Late Early Cretaceous adakitic granitoids and associated magnesian and potassium-rich mafic enclaves and dikes in the Tunchang-Fengmu area, Hainan Province (South China): Partial melting of lower crust and mantle, and magma hybridization. Chem. Geol., v.328, p.222-243. doi: 10.1016/j.chemgeo.2012.04.029.   DOI
28 White, M.J. and McPhie, J. (1997) A submarine welded ignimbrite-crystal-rich sandstone facies association in the Cambrian Tyndall Group, western Tasmania, Australia. J. Volcanol. Geotherm. Res., v.76, p.277-295. doi: 10.1016/S0377-0273(96)00105-9.   DOI
29 Zhang, Y.-B., Zhai, M., Hou, Q.-L., Li, T.-S., Liu, F. and Hu, B. (2012) Late Cretaceous Volcanic rocks and associated granites in Gyeongsang Basin, SE Korea: Their chronological ages and tectonic implications for cratonic destruction of the North China Craton. J. Asian Earth Sci., v.47, p.252-264. doi: 10.1016/j.jseaes.2011.12.011.   DOI
30 Brown, R.J., Bonadonna, C. and Durant, A.J. (2012) A review of volcanic ash aggregation. Phys. Chem. Earth, v.45-46, p.65-78. doi: 10.1016/j.pce.2011.11.001.   DOI
31 Ghim, Y.S., Ko, K. and Lee, B.C. (2020) Occurrence of the lowermost part of the Yucheon Group and its SHRIMP U-Pb ages in Hyeonpoong and Bugok areas. Econ. Environ. Geol., v.53, p.397-411. doi: 10.9719/EEG.2020.53.4.397.   DOI
32 Druitt, T.H. (1998) Pyroclastic density currents. In Gilbert, J.S. and Sparks, R.S.J. (eds.), The Physics of Explosive Volcanic Eruptions, Geol. Soc. Lond. Spec. Publ., v.145, p.145-182. doi: 10.1144/GSL.SP.1996.145.01.08.   DOI
33 Branney, M.J. and Kokelaar, B.P. (2002) Pyroclastic density currents and the sedimentation of ignimbrites. Geol. Soc. Lond. Mem. 27, Geological Society of London, London, 152p.
34 Bursik, M.I. and Woods, A.W. (1996) The dynamics and thermodynamics of large ash flows. Bull. Volcanol., v.58, p.175-193. doi: 10.1007/s004450050134.   DOI
35 Chang, K.H. (1977) Late Mesozoic stratigraphy, sedimentation and tectonics of southeastern Korea. J. Geol. Soc. Korea, v.13, p.76-90.
36 Freundt, A., Schindlbeck-Belo, J.C., Kutterolf, S. and Hopkins, J.L. (in press) Tephra layers in the marine environment: A review of properties and emplacement processes. In Di Capua, A., De Rosa, R., Kereszturi, G., Le Pera, E., Rosi, M. and Watt, S.F.L. (eds.) Volcanic Processes in the Sedimentary Record: When Volcanoes Meet the Environment. Geol. Soc. Lond. Spec. Publ., v.520. doi: 10.1144/SP520-2021-50.   DOI
37 Hwang, S.K., Kim, S.W., Kim, S.K., Ahn, U.S., Jo, I.H., Lee, S.J. and Kim, J.J. (2019) Chronostratigraphic implication of the Yucheon Group in Gyeongsang Basin, Korea. J. Geol. Soc. Korea, v.55, p.633-647 (in Korean with English abstract). doi: 10.14770/jgsk.2019.55.5.633.   DOI
38 Kim, S.W., Kwon, S., Park, S.-I., Lee, C., Cho, D.-L., Lee, H.-J., Ko, K. and Kim, S.J. (2016) SHRIMP U-Pb dating and geochemistry of the Cretaceous plutonic rocks in the Korean Peninsula: A new tectonic model of the Cretaceous Korea Peninsula. Lithos, v.262, p.88-106. doi: 10.1016/j.lithos.2016.06.027.   DOI
39 Hong, S. H. and Choi, P-Y. (1988) Geological report of the Yuchon sheets (1:50,000). Korea Institute of Energy and Resources, Seoul, Korea. p.26 (in Korean with English abstract).
40 Gim, J-H., Jeong, J-O., Gihm, Y.S., Gu, H-C. and Sohn, Y.K. (2016) Depositional environments and processes of the subsurface dacitic volcaniclastic deposits in the Miocene Janggi Basin, SE Korea. J. Geol. Soc. Korea, v.52, p.775-798 (in Korean with English abstract). doi: 10.14770/jgsk.2016.52.6.775.   DOI
41 Kim, K.B. and Hwang, S.K. (1988) Geological report of the Miryang sheets (1:50,000). Korea Institute of Energy and Resources, Seoul, Korea. p.26 (in Korean with English abstract).
42 Kim, S.W., Kwon, S., Ryu, I.-C., Jeong, Y.-J., Choi, S.-J., Kee, W.-S., Yi, K., Lee, Y.S., Kim, B.C. and Park, D.W. (2012) Characteristics of the Early Cretaceous Igneous activity in the Korean Peninsula and Tectonic Implications. J. Geol., v.120, p.625-646. doi: 10.1086/667811.   DOI
43 Trofimovs, J., Sparks, R.S.J. and Talling, P.J. (2008) Anatomy of a submarine pyroclastic flow and associated turbidity current: July 2003 dome collapse, Soufriere Hills volcano, Montserrat, West Indies. Sedimentology, v.55, p.617-634. doi: 10.1111/j.1365-3091.2007.00914.x.   DOI
44 Kneller, B.C. (1995) Beyond the turbidite paradigm: Physical models for deposition of turbidites and their implications for reservoir prediction. In Hartley, A.J. and Prosser, D.J. (eds.), Characteristics of Deep Marine Clastic Systems. Geol. Soc. Lond. Spec. Publ., v.94 p.31-49. doi: 10.1144/GSL.SP.1995.094.01.04.   DOI
45 Koh, H.J., Kwon, C.W., Park, S.-I., Park, J. and Kee, W.-S. (2013) Geological report of the Julpo, Wido, and Hawangdeungdo sheets (1:50,000). Korea Institute of Geoscience and Mineralogy Resources, Daejeon, Korea. p.81 (in Korean with English abstract).
46 Kokelaar, B.P. and Koniger, S. (2000) Marine emplacement of welded ignimbrite: The Ordovician Pitts Head Tuff, North Wales. J. Geol. Soc., v.157, p.517-536. doi: 10.1144/jgs.157.3.517.   DOI
47 Legros, F. and Druitt, T.H. (2000) On the emplacement of ignimbrite in shallow-marine environments. J. Volcanol. Geotherm. Res., v.95, p.9-22. doi: 10.1016/S0377-0273(99)00116-X.   DOI
48 Kneller, B.C. and Branney, M.J. (1995) Sustained high-density turbidity currents and the deposition of thick massive sands. Sedimentology, v.42, p.607-616. doi: 10.1111/j.1365-3091.1995.tb00395.x.   DOI
49 Kokelaar, B.P., Raine, P. and Branney, M.J. (2007) Incursion of a large-volume, spatter-bearing pyroclastic density current into a caldera lake: Pavey Ark ignimbrite, Scafell caldera, England. Bull. Volcanol., v.70, p.23-54. doi: 10.1007/s00445-007-0118-5.   DOI
50 Di Capua, A. and Groppelli, G. (2016) Emplacement of pyroclastic density currents (PDCs) in a deep-sea environment: The Val d'Aveto Formation case (Northern Apennines, Italy). J. Volcanol. Geoth. Res., v.328, p.1-8. doi: 10.1016/j.jvolgeores.2016.08.003.   DOI
51 Li, J., Zhang, Y., Dong, S. and Johnston, S.T. (2014) Cretaceous tectonic evolution of South China: A preliminary synthesis. Earth-Sci. Rev., v.134, p.98-136. doi: 10.1016/j.earscirev.2014.03.008.   DOI
52 Owen, G., Moretti, M. and Alfaro, P. (2011) Recognising triggers for soft-sediment deformation: Current understanding and future directions. Sediment. Geol. v.235, p.133-140. doi: 10.1016/j.sedgeo.2010.12.010.   DOI
53 Talling, P.J., Masson, D.G., Sumner, E.J. and Malgesini, G. (2012) Subaqueous sediment density flows: Depositional processes and deposit types. Sedimentology, v.59, p.1937-2003. doi: 10.1111/j.1365-3091.2012.01353.x.   DOI
54 Renaut, R.W. and Gierlowski-Kordesch, E.H. (2010) Lakes. In James, N. and Dalrymple, R. (eds.), Facies Models. Geol. Ass. Can., Toronto, p.541-575.
55 Ryang, W.H. and Chough, S.K. (1997) Sequential development of alluvial/lacustrine system; southeastern Eumsung Basin (Cretaceous), Korea. J. Sediment. Res., v.67, p.274-285. doi: 10.1306/D426854F-2B26-11D7-8648000102C1865D.   DOI
56 Sohn, Y.K. (1997) On traction-carpet sedimentation. J. Sediment. Res., v.67, p.502-509. doi: 10.1306/D42685AE-2B26-11D7-8648000102C1865D.   DOI
57 Van Eaton, A.R., Muirhead, J.D., Wilson, C.J.N. and Cimarelli, C. (2012) Growth of volcanic ash aggregates in the presence of liquid water and ice: An experimental approach. Bull. Volcanol., v.74, p.1963-1984. doi: 10.1007/s00445-012-0634-9.   DOI
58 White, J.D.L. and Houghton, B.F. (2006) Primary volcaniclastic rocks. Geology, v.34, p.677-680. doi: 10.1130/G22346.1.   DOI