Browse > Article
http://dx.doi.org/10.9719/EEG.2021.54.2.259

The Statistical Study on the Effects of Physicochemical Properties of Soil on Single Extraction Methods for Heavy Metals  

Han, Hyeop-Jo (Department of Energy and Resources Engineering, Chonnam National University)
Song, Chang-Woo (Department of Energy and Resources Engineering, Chonnam National University)
Lee, Jong-Un (Department of Energy and Resources Engineering, Chonnam National University)
Publication Information
Economic and Environmental Geology / v.54, no.2, 2021 , pp. 259-269 More about this Journal
Abstract
The effects of the physicochemical properties of soil such as soil pH, cation exchange capacity, and organic matter content on single extraction of Cd, Cr, Cu, Ni, Pb, and Zn using CaCl2, HOAc, HNO3, and DTPA were statistically investigated for 69 agricultural soils in Korea. Correlation analysis and multiple regression analysis were applied for soil samples which were grouped on the basis of average values of the physicochemical properties of the soil. Diluted HNO3 extracted higher concentrations of Cr, Cu, Ni, and Pb when compared with the other extractants, however, similar amounts of Cd and Zn were extracted by HOAc with HNO3. The results of correlation analysis indicated that DTPA extraction showed a high correlation with other single and pseudo-total extraction methods, and the physicochemical properties of soil influenced the concentrations of heavy metals leached by the single extraction methods. In the case of Zn, high correlations between pseudo-total and the studied single extraction methods were observed. As a result of regression analysis, it was found that the physicochemical properties of the soil could explain up to 74% of variances of the single extraction results. These results indicate that the physicochemical properties of the soil can have a direct influence on the concentrations of heavy metals extracted by the single extraction methods.
Keywords
soil; heavy metal; single extraction; correlation; regression analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ministry of Environment (MOE) (2020) Report on soil measurement network and soil contamination actual condition in 2019. 2021.01.15, http://webbook.me.go.kr/DLi-File/091/027/003/5671217.pdf.
2 Boyle, J. (2004) A comparison of two methods for estimating the organic matter content of sediments. J. Paleolimn., v.31, p.125-127. doi: 10.1023/b:jopl.0000013354.67645.df   DOI
3 Chiou, W.-Y. and Hsu, F.-C. (2019) Copper toxicity and prediction models of copper content in leafy vegetables. Sustainability, v.11, p.6215. doi: 10.3390/su11226215   DOI
4 DIN (Deutsches Institut fur Normung), 1997. Bodenbeschaffenheit- Extraktion von Spurenelementen mit Ammoniumnitratlosung (ISO 19730:2008), Germany. doi: 10.31030/1517786
5 Han, H.-J., Ko, M.-S., Ko, J.I., and Lee, J.-U. (2020) Study on soil extraction methods for contamination assessment of heavy metals in soil. J. Korean Soc. Miner. Energy Resour. Eng., v.57, n.5, 471-482. doi: 10.32390/ksmer.2020.57.5.471   DOI
6 Rauret, G., Lopez-Sanchez, J.F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A., and Quevauviller, Ph. (1999) Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. J. Environ. Monit., v.1, p.57-61. doi: 10.1039/a807854h   DOI
7 Roh, A.S., Park, J.S., Kim, Y.H., and Kang, S.S. (2015) Status and changes in chemical properties of paddy soil in Gyeonggi Province. Korean J. Soil. Sci. Fert., v.48, p.436-441. doi: 10.7745/kjssf.2015.48.5.436   DOI
8 Song, C.-W., Han, H.-J., and Lee, J.-U. (2019) Investigation on geochemical characteristics of heavy metals in soils in the vicinity of Samcheonpo and Hadong coal-fired power plants in Korea. Econ. Environ. Geol, v.52, p.141-158. doi: 10.9719/EEG.2019.52.2.141   DOI
9 Salazar, M.J., Rodriguez, J.H., Nieto, G.L., and Pignata, M.L. (2012) Effects of heavy metal concentrations (Cd, Zn and Pb) in agricultural soils near different emission sources on quality, accumulation and food safety in soybean [Glycine max (L.) Merrill]. J. Hazard. Mater., v.233-234, p.244-253. doi: 10.1016/j.jhazmat.2012.07.026   DOI
10 Seo, B.-H., Lim, G.-H., Kim, K.-H., Kim, J.-E., Hur, J.-H., Kim, W.-I., and Kim, K.-R. (2013) Comparison of single extractions from evaluation of heavy metals phytoavailability in soil. Korean J. Environ. Agric., v.32, p.171-178. doi: 10.5338/kjea.2013.32.3.171   DOI
11 Zhang, M.K., Liu, Z.Y., and Wang, H. (2010) Use of single extraction methods to predict bioavailability of heavy metals in polluted soils to rice. Commun. Soil Sci. Plant Anal., v.41, p.820-831. doi: 10.1080/00103621003592341   DOI
12 Sungur, A., Soylak, M., and Ozcan, H. (2014) Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure: relationship between soil properties and heavy metals availability. Chem. Spec. Bioavailab., v.26, p.219-230. doi: 10.3184/095422914x14147781158674   DOI
13 Tessier, A., Campbell, P.G.C., and Bisson, M. (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem., v.51, p.844-851. doi: 10.1021/ac50043a017   DOI
14 Tipping, E., Pieuwerts, J., Pan, G., Ashmore, M.R., Lofts, S., Hill, M.T.R., Farago, M.E., and Thornton, I. (2003) The solid-solution partitioning of heavy metals (Cu, Zn, Cd, Pb) in upland soils of England and Wales. Environ. Pollut., v.125, p.213-225. doi: 10.1016/s0269-7491(03)00058-7   DOI
15 van Ranst, E., Verloo, M., Demeyer, A., and Pauwels, J.M. (1999) Manual for the soil chemistry and fertility laboratory. University of Gent, Belgium.
16 VSBo, 1986. Verordnung uber Schadstoffhegalt im Boden, Swiss ordinance on pollutants in soils. Nr. 814.12, Publ. Eidg. Drucksachen und Materialzentrale (EDMZ), 3000 Bern, Switzerland.
17 Zhu, Q.H., Huang, D.Y., Liu, S.L., Luo, Z.C., Zhu, H.H., Zhou, B., Lei, M., Rao, Z.X., and Cao, X.L. (2012) Assessment of single extraction methods for evaluating the immobilization effect of amendments on cadmium in contaminated acidic paddy soil. Plant Soil Environ., v.58, p.98-103. doi: 10.17221/358/2011-pse   DOI
18 Zimmerman, A.J. and Weindorf, D.C. (2010) Heavy metal and trace metal analysis in soil by sequential extraction: a review of procedure. Int. J. Anal. Chem., v.2010, p.1-7. doi: 10.1155/2010/387803   DOI
19 Lindsay, W.L. and Norvell, W.A. (1978) Development of a DTPA soil test for zinc, iron, manganese, and copper. Soil Sci. Soc. Am. J., v.42, p.421-428. doi: 10.2136/sssaj1978.03615995004200030009x   DOI
20 Lima, E.S.A., Sobrinho, N.M.B,A., Perez, D.V., and Coutinho, I.B. (2016) Comparing methods for extracting heavy metals from histosols for establishing quality reference values. Rev. Bras. Cienc. Solo, v.40, e0150097. doi: 10.1590/18069657rbcs20150097   DOI
21 Lo, I.M.C. and Yang, X.Y. (1999) EDTA extraction of heavy metals from different soil fractions and synthetic soils. Water Air Soil Pollut., v.109, p.219-236. doi: 10.1023/A:1005000520321   DOI
22 Meers, E., Laing, G.D., Unamuno, V., Ruttens, A., Vangronsveld, J., Tack, F.M.G., and Verloo, M.G. (2007a) Comparison of cadmium extractability from soils by commonly used single extraction protocols. Geoderma, v.141, p.247-259. doi: 10.1016/j.geoderma.2007.06.002   DOI
23 Kelepertzis, E., Paraskevopoulou, V., Argyraki, A., Fligos, G., and Chalkiadaki, O. (2015) Evaluation of single extraction procedures for the assessment of heavy metal extractability in citrus agricultural soil of a typical Mediterranean environment (Argolida, Greece). J. Soils Sediments, v.15, p.2265-2275. doi: 10.1007/s11368-015-1163-x   DOI
24 Krishnamurti, G.S.R. and Naidu, R. (2003) Solid-solution equilibria of cadmium in soils. Geoderma, v.113, p.17-30. doi: 10.1016/s0016-7061(02)00313-0   DOI
25 Lim, G.H., Kim, K.H., Seo, B.H., and Kim, K.R. (2014) Transfer function for phytoavailable heavy metals in contaminated agricultural soil. Korean J. Environ. Agric., v.33, p.271-281. doi: 10.5338/kjea.2014.33.4.271   DOI
26 Heemsbergen, D.A., Warne, M.S.J., Broos, K., Bell, M., Nash, D., McLaughlin, M., Whatmuff, M., Barry, G., Pritchard, D., and Penney, N. (2009) Application of phytotoxicity data to a new Australian soil quality guideline framework for biosolids. Sci. Tot. Environ., v.407, p.2546-2556. doi: 10.1016/j.scitotenv.2009.01.016   DOI
27 Houba, V.J.G., Temminghoff, E.J.M., Gaikhorst, G.A., and van Vark, W. (2000) Soil analysis procedure using 0.01 M calcium chloride as extraction reagent. Commun. Soil Sci. Plant Anal., v.31, p.1299-1396. doi: 10.1080/00103620009370514   DOI
28 Kabata-Pendias, A., (1993) Behavioural properties of trace metals in soils. J. Appl. Geochem., v.8, p3-9. doi: 10.1016/s0883-2927(09)80002-4   DOI
29 Kim, G.H., Kim, G.Y., Kim, J.K., S, D.M., Seo, J.S., Son, B.K., Yang, J.E., Um, K.C., Lee, S.E., Jeong, K.Y., Jeong, D.Y., Jeong, Y.T., Jeong, J.B., and Hyeon, H.N. (2009) Soil science, 2nd Ed. Hyangmoon-sa, Seoul, Korea, 195p.
30 Meers, E., Samson, R., Tack, F.M.G., Ruttens, A., Vandegehuchte, M., Vangronsveld, J., and Verloo, M.G. (2007b) Phytoavailability assessment of heavy metals in soils by single extractions and accumulation by Phaseolus vulgaris. Environ. Exp. Bot., v.60, p.385-396. doi: 10.1016/j.envexpbot.2006.12.010   DOI