Browse > Article
http://dx.doi.org/10.9719/EEG.2012.45.2.145

Sulfur Isotope Composition of Seafloor Hydrothermal Vents in the Convergent Plate Boundaries of the Western Pacific: A Role of Magma on Generation of Hydrothermal Fluid  

Kim, Jong-Uk (Deep-sea & Marine Georesources Research Department, KORDI)
Moon, Jai-Woon (Deep-sea & Marine Georesources Research Department, KORDI)
Lee, Kyeong-Yong (Deep-sea & Marine Georesources Research Department, KORDI)
Lee, In-Sung (School of Earth and Environmental Sciences, Seoul National University)
Publication Information
Economic and Environmental Geology / v.45, no.2, 2012 , pp. 145-156 More about this Journal
Abstract
Seafloor hydrothermal system occurs along the volcanic mid-ocean ridge, back-arc spreading center, and other submarine volcanic regions. The hydrothermal system is one of the fundamental processes controlling the transfer of energy and matter between crust/mantle and ocean; it forms hydrothermal vents where various deepsea biological communities are inhabited and precipitates metal sulfide deposits. Hydrothermal systems at convergence plate boundaries show diverse geochemical properties due to recycle of subducted material compared to simple systems at mid-ocean ridges. Sulfur isotopes can be used to evaluate such diversity in generation and evolution of hydrothermal system. In this paper, we review the sulfur isotope composition and geochemistry of hydrothermal precipitates sampled from several hydrothermal vents in the divergent plate boundaries in the western Pacific region. Both sulfide and sulfate minerals of the hydrothermal vents in the arc and backarc tectonic settings commonly show low sulfur isotope compositions, which can be attributed to input of magmatic $SO_2$ gas. Diversity in geochemistry of hydrothermal system suggests an active role of magma in the formation of seafloor hydrothermal system.
Keywords
Seafloor hydrothermal system; hydrothermal vent; convergence plate boundary; sulfur isotope;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alt, J.C., Shanks III, J.C. and Jackson, M.C. (1993) Cycling of sulfur in subduction zones: The geochemistry of sulfur in the Mariana Island Arc and back-arc trough. Earth Planet. Sci. Lett., v.119, p.477-494.   DOI   ScienceOn
2 Alt, J.C. (1995) Subseafloor processes in mid-ocean ridge hydrothermal system. In Humphris, S.E. et al. (eds.), Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. American Geophysical Union, Washington, p.85-114.
3 Beaulieu, S.E. (2010) InterRidge Global Database of Active Submarine Hydrothermal Vent Fields: prepared for InterRidge, Version 2.0. World Wide Web electronic publication. http://www.interridge.org/IRvents.
4 Butterfield, D.A., Jonasson, I.R., Massoth, G.J., Feely, R.A., Roe, K.K., Embley, R.E., Holden, J.F., McDuff, R.E., Lilley, M.D. and Delaney, J.R. (1997) Seafloor eruptions and evolution of hydrothermal fluid chemistry. Phil. Trans. R. Soc. Lond. A. v.355, p.369-386.   DOI
5 de Ronde, C., Hannington, M., Stoffers, P., Wright, I., Ditchburn, R., Reyes, A., Baker, E., Massoth, G., Lupton, J., Walker, S., Greene, R., Soong, C., Ishibashi, J., Lebon, G., Bray, C. and Resing, J. (2006) Evolution of a submarine magmatic-hydrothermal system: Brother Volcano, Southern Kermadec Arc, New Zealand. Econ. Geol., v.100, p.1097-1133.
6 Drummond, S.E. and Ohmoto, H. (1985) Chemical evolution and mineral deposition in boiling hydrothermal systems. Econ. Geol., v.80, p.126-147.   DOI
7 Embley, R.W., Baker, E.T., Butterfield, D.A., Chadwick, W.W., Lupton, J.E., Resing, J.A., de Ronde, C.E.J., Nakamura, K., Unnicliffe, V., Dower, J.F. and Merle, S.G. (2007) Exploring the submarine ring of fire: Mariana Arc-Western Pacific. Oceanography, v.20, p.68-79.   DOI
8 Gamo, T., Okamura, K., Charlou, J.-L., Urabe, T., Auzende, J.-M., Ishibash, J., Shitashima, K., Chiba, H. and Shipboard Scientific Party of the Manus Flux Cruise, Acidic and sulfate-rich hydrothermal fluids from the Manus back-arc basin, Papua New Guinea, Geology, v.25, p.139-142. (1997)   DOI
9 German, C.R. and Von Damm, K.L. (2004) Hydrothermal processes. In Turekian, K.K. and Holland, H.D. (eds.) Treatise on Geochemistry, v.6, The Oceans and Marine Geochemistry. Elsevier, p.181-222.
10 Hannington, M.D., de Ronde, C.E.J. and Petersen, S. (2005) Seafloor tectonics and submarine hydrothermal systems. In Hedenquist, J. et al. (eds.), 100th Anniversary Volume of Economic Geology
11 Herzig, P.M., Hannington, M.D. and Arribas Jr, A. (1998) Sulfur isotopic composition of hydrothermal precipitates from the Lau back-arc: implications for magmatic contributions to seafloor hydrothermal systems. Miner. Deposita, v.33, p.226-237.   DOI
12 Ishibashi, J. and Urabe, T. (1995) Hydrothermal activity related to arcbackarc magmatism in the Western Pacific. In Taylor, B. (ed.) Backarc Basins: Tectonics and Magmatism. Plenum Press, New York, p.451-495.
13 Janecky, D.R. and Shanks III, J.C. (1988) Computational modeling of chemical and sulfur isotopic reaction processes in seafloor hydrothermal systems: chimneys, massive sulfides, and subjacent alteration zones. Can. Mineral, v.26, p.805-825.
14 Kim, J., Lee, I. and Lee, K.Y. (2004) S, Sr, and Pb isotopic systematics of hydrothermal chimney precipitates from the Eastern Manus Basin, western Pacific: evaluation of magmatic contribution to hydrothermal system. J. Geophys. Res., v.107, B12210.
15 Kim, J., Lee, I., Halbach, P., Lee, K.Y., Ko, Y.T. and Kim, K.H. (2006) Formation of hydrothermal vents in the North Fiji Basin: Sulfur and lead isotope constraints. Chem. Geol., v.233, p.257-275.   DOI
16 Kim, J., Ko, Y.T., Son, S.K. and Lee, K.Y. (2007) Hydrothermal activity in back-arc and arc caldera in the NE Lau Basin (abstract). Spring meeting of geological sciences of Korea, Abstract with program, p.486-488.
17 Martinez, F., Taylor, B., Baker, E.T., Resing, J.A. and Walker, S.L. (2006) Opposing trends in crustal thickness and spreading rate along the back-arc Eastern Lau Spreading Center: Implications for controls on ridge morphology, faulting, and hydrothermal activity. Earth Planet. Sci. Lett., v.245, p.655-672.   DOI   ScienceOn
18 Kim, J., Son, S.K., Son, J.W., Kim, K.H., Shim, W.J., Kim, C.H. and Lee, K.Y. (2009) Venting sites along the Fonualei and Northeast Lau Spreading Centers and evidence of hydrothermal activity at an off-axis caldera in the northeastern Lau Basin. Geochemical Journal, v.43, p.1-13.   DOI
19 Kim, J., Lee, K.Y. and Kim, J.H. (2011) Metal-bearing molten sulfur collected from a submarine volcano: Implications for vapor transport of metals in seafloor hydrothermal systems. Geology, v. 39. p. 351-354.   DOI
20 Luders, V., Pracejus, B. and Halbach, P. (2001) Fluid inclusion and sulfur isotope studies in probable modern analogue Kuroko-type ores from the JADE hydrothermal field (Central Okinawa Trough, Japan). Chem. Geol., v.173, p.45-58.   DOI
21 Martinez, F. and Taylor, B. (2006) Modes of crustal accretion in back-arc basins: Inferences from the Lau Basin. In Christie, D.M. et al., (eds.) Back-arc spreading systems: Geological, biological, chemical, and physical interactions. Geophysical Monograph Series 166, p.5-30.   DOI
22 McKibben, M.A. and Eldridge, C.S. (1990) Radical sulfur isotope zonation of pyrite accompanying boiling and epithermal gold deposition: a SHRIMP study of the Valles Caldera, New Maxico. Econ. Geol., v.85, p.1917-1925.   DOI
23 Miyabe, S., Butterfield, D. A., Roe, K. K., Ishibashi, J., Embley, R. W., Chiba, H. and Nakamura, K. (2004) Sulfur Isotope Geochemistry of Mariana Arc Hydrothermal Systems. American Geophysical Union, Fall Meeting 2004, abstract #V41B-1387.
24 Ramirez-Llodra E., Shank, T.M. and German, C. R. (2007) Biodiversity and biogeography of hydrothermal vent species: Thirty years of discovery and investigations. Oceanography, v.20, p.30-41.
25 Nakamura, K.T., Butterfiled, B., Resing, D.A., Chadwick, J. and Embley, W.W. (2009) Intermediate products of sulfur disproportional reaction and their physical role in effusive to explosive submarine volcanic activity. Eos, Transactions, American Geophysical Union, v.90 (52), Abstract V51D-1715.
26 Ohmoto, H. and Lasaga, A.C. (1982) Kinetics of reactions between aqueous sulfates and sulfides in hydrothermal systems. Geochim. Cosmochim. Acta, v.46, p.1727-1745.   DOI
27 Peter, J.M. and Shanks III, W.C. (1992) Sulfur, carbon, and oxygen isotope variations in submarine hydrothermal deposits of Guaymas Basin, Gulf of California, USA. Geochim. Cosmochim. Acta, v.56, p.2025-2040.   DOI
28 Reed, M.H. and Spycher, N.F. (1985) Boiling, cooling, and oxidation in epithermal systems: A numerical modeling approach. Rev. Econ. Geology, v.2, p.249-272.
29 Rees, C.E., Jenkins, W.J. and Monster, J. (1978) The sulfur isotopic composition of ocean water sulfate. Geochim. Cosmochim. Acta, v.42, p.377-381.   DOI
30 Rye, R. (2005) A review of the stable-isotope geochemistry of sulfate minerals in selected igneous environments and related hydrothermal systems. Chem. Geol., v.215, p.5-36.   DOI
31 Sakai, H., Des Maris, D.J., Ueda, A. and Moore, J.G. (1984) Concentrations and isotope ratios of carbon, nitrogen, and sulfur in ocean-floor basalts and volcanic gases at Kilauea volcano, Hawaii. Geochim. Cosmochim. Acta, v.48, p.2433-2441.   DOI
32 Seal, R.R. II (2006) Sulfur isotope geochemistry of sulfide minerals. Reviews in Mineralogy and Geochemistry, v.61, p.633-677.   DOI
33 Shanks, J.C., III (2001) Stable isotopes in seafloor hydrothermal systems. In Valley, J.W. and Cole, D.R. (eds.) Stable isotope geochemistry. Mineralogical Society of America and Geochemical Society, p.469-525.
34 Seyfried, W.E. and Bischoff, J.L. (1981) Experimental seawater-basalt interaction at $300^{\circ}C$, 500 bars, chemical exchange, secondary mineral formation and implications for the transport of heavy metals. Geochim. Cosmochim. Acta, v.45, p.135-147.   DOI
35 Seyfried, W. E. and Ding, K. (1995) Phase equilibria in subseafloor hydrothermal system: A review of the role of redox, temperature, pH and dissolved Cl on the chemistry of hot spring fluids at mid-ocean ridges. In Humphris, S.E. et al. (eds.) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. American Geophysical Union, p.248-272.
36 Shanks, W.C., III, Bhlke, J.K. and Seal, R.R.I. (1995) Stable isotopes in mid-ocean ridge hydrothermal systems: interactions between fluids, minerals, and organisms. In Humphris, S.E. et al. (eds.) Seafloor hydrothermal systems: physical, chemical, biological, and geological interactions. American Geophysical Union, p.194-221.
37 Teagle, D.A.H., Alt, J.C., Chiba, H. and Halliday, A.N. (1998) Dissecting an active hydrothermal deposit: the strontium and oxygen isotopic anatomy of the TAG hydrothermal mound-anhydrite. Proc. Ocean Drill. Program Sci. Results, v.158, p.129-142.
38 Woodruff, L.G. and Shanks, J.C. III (1988) Sulfur isotope study of chimney minerals and vent fluids from $21^{\circ}N$, East Pacific Rise: Hydrothermal sulfur sources and disequilibrium sulfate reduction. J. Geophys. Res., v.93(B5), p.4562-4572.   DOI
39 Yang, K. and Scott, S.D. 2006, Magmatic fluids as a source of metals in seafloor hydrothermal systems. In Christie, D.M. et al., (eds.) Back-arc spreading systems: Geological, biological, chemical, and physical interactions. American Geophysical Union, p.163-184.