Browse > Article
http://dx.doi.org/10.12674/ptk.2015.22.2.070

Muscular Adaptations and Novel Magnetic Resonance Characterizations of Spinal Cord Injury  

Lim, Woo-Taek (Dept. of Physical Therapy, College of Health and Welfare, Woosong University)
Publication Information
Physical Therapy Korea / v.22, no.2, 2015 , pp. 70-80 More about this Journal
Abstract
The spinal cord is highly complex, consisting of a specialized neural network that comprised both neuronal and non-neuronal cells. Any kind of injury and/or insult to the spinal cord leads to a series of damaging events resulting in motor and/or sensory deficits below the level of injury. As a result, muscle paralysis (or paresis) leading to muscle atrophy or shrinking of the muscle along with changes in muscle fiber type, and contractile properties have been observed. Traditionally, histology had been used as a gold standard to characterize spinal cord injury (SCI)-induced adaptation in spinal cord and skeletal muscle. However, histology measurements is invasive and cannot be used for longitudinal analysis. Therefore, the use of conventional magnetic resonance imaging (MRI) is promoted to be used as an alternative non-invasive method, which allows the repeated measurements over time and secures the safety against radiation by using radiofrequency pulse. Currently, many of pathological changes and adaptations occurring after SCI can be measured by MRI methods, specifically 3-dimensional MRI with the advanced diffusion tensor imaging technique. Both techniques have shown to be sensitive in measuring morphological and structural changes in skeletal muscle and the spinal cord.
Keywords
Diffusion tensor imaging; Magnetic resonance imaging; Muscular adaptation; Spinal cord injury;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Allen AR. Surgery of experimental lesion of spinal cord equivalent to crush injury of fracture dislocation of spinal column: A preliminary report. JAMA. 1911;57(11):878-880.
2 Allen AR. Remarks on the histopathological changes in the spinal cord due to impact. An experimental study. J Nerv Ment Dis. 1914;41(3): 141-147.   DOI
3 Armstrong RB, Phelps RO. Muscle fiber type composition of the rat hindlimb. Am J Anat. 1984;171 (3):259-272.   DOI
4 Baker JH, Matsumoto DE. Adaptation of skeletal muscle to immobilization in a shortened position. Muscle Nerve. 1988;11(3):231-244.   DOI
5 Baldwin KM, Roy RR, Sacks RD, et al. Relative independence of metabolic enzymes and neuromuscular activity. J Appl Physiol Respir Environ Exerc Physiol. 1984;56(6):1602-1607.
6 Berkowitz M. Spinal cord injury: An analysis of medical and social costs. New York, Demos Medical Publishing, 1998:1.
7 Brown MD, Cotter MA, Hudlicka O, et al. The effects of different patterns of muscle activity on capillary density, mechanical properties and structure of slow and fast rabbit muscles. Pflugers Arch. 1976;361(3):241-250.   DOI
8 Burnham R, Martin T, Stein R, et al. Skeletal muscle fibre type transformation following spinal cord injury. Spinal Cord. 1997;35(2):86-91.   DOI
9 Castro MJ, Apple DF Jr, Hillegass EA, et al. Influence of complete spinal cord injury on skeletal muscle cross-sectional area within the first 6 months of injury. Eur J Appl Physiol Occup Physiol. 1999a;80(4):373-378.   DOI
10 Castro MJ, Apple DF Jr, Staron RS, et al. Influence of complete spinal cord injury on skeletal muscle within 6 mo of injury. J Appl Physiol. 1999b;86 (1):350-358.   DOI
11 De Smet E, Vanhoenacker FM, Parizel PM. Traumatic myelopathy: Current concepts in imaging. Semin Musculoskelet Radiol. 2014;18(3): 318-331. http://dx.doi.org/10.1055/s-0034-1375573   DOI
12 Dudley GA, Castro MJ, Rogers S, et al. A simple means of increasing muscle size after spinal cord injury: A pilot study. Eur J Appl Physiol Occup Physiol. 1999;80(4):394-396.   DOI
13 Dumont RJ, Okonkwo DO, Verma S, et al. Acute spinal cord injury, part I: Pathophysiologic mechanisms. Clin Neuropharmacol. 2001;24(5): 254-264.   DOI
14 Enoka RM. Muscle strength and its development. New perspectives. Sports Med. 1988;6(3):146-168.   DOI
15 Elder CP, Apple DF, Bickel CS, et al. Intramuscular fat and glucose tolerance after spinal cord injury- a cross-sectional study. Spinal Cord. 2004; 42(12):711-716.   DOI
16 Ellingson BM, Kurpad SN, Schmit BD. Functional correlates of diffusion tensor imaging in spinal cord injury. Biomed Sci Instrum. 2008;44:28-33.
17 Engstrom CM, Loeb GE, Reid JG, et al. Morphometry of the human thigh muscles. A comparison between anatomical sections and computer tomographic and magnetic resonance images. J Anat. 1991;176:139-156.
18 Favero TG. Sarcoplasmic reticulum Ca (2+) release and muscle fatigue. J Appl Physiol. 1999;87(2): 471-483.   DOI
19 Fehlings MG, Sekhon L. Cellular, Ionic and Biomolecular Mechanisms of the Injury Process in Contemporary Management of Spinal Cord Injury: From impact to rehabilitation. Chicago, IL, American Association of Neurological Surgeons, 2000:33.
20 Fitts RH. Cellular mechanisms of muscle fatigue. Physiol Rev. 1994;74(1):49-94.   DOI
21 Ford JC, Hackney DB, Alsop DC, et al. MRI characterization of diffusion coefficients in a rat spinal cord injury model. Magn Reson Med. 1994;31(5): 488-494.   DOI
22 Gordon T, Mao J. Muscle atrophy and procedures for training after spinal cord injury. Phys Ther. 1994;74(1):50-60.   DOI
23 Gordon T, Pattullo MC. Plasticity of muscle fiber and motor unit types. Exerc Sport Sci Rev. 1993;21:331-362.
24 Hashemi RH, Bradley WG, Lisanti CJ. MRI: The basics. 2nd ed. Philadelphia, Lippincott Williams & Wilkins, 2004:63.
25 Gorgey AS, Dudley GA. Skeletal muscle atrophy and increased intramuscular fat after incomplete spinal cord injury. Spinal Cord. 2007;45(4):304-309.   DOI
26 Gorgey AS, Dudley GA. Spasticity may defend skeletal muscle size and composition after incomplete spinal cord injury. Spinal Cord. 2008;46 (2):96-102.   DOI
27 Halkjaer-Kristensen J, Ingemann-Hansen T. Variations in single fibre areas and fibre composition in needle biopsies from the human quadriceps muscle. Scand J Clin Lab Invest. 1981;41(4): 391-395.   DOI
28 Henkelman RM, Stanisz GJ, Graham SJ. Magnetization transfer in MRI: A review. NMR Biomed. 2001; 14(2):57-64.   DOI
29 Hopman MT, Nommensen E, van Asten WN, et al. Properties of the venous vascular system in the lower extremities of individuals with paraplegia. Paraplegia. 1994;32(12):810-816.   DOI
30 Hutchinson KJ, Linderman JK, Basso DM. Skeletal muscle adaptations following spinal cord contusion injury in rat and the relationship to locomotor function: A time course study. J Neurotrauma. 2001;18(10):1075-1089.   DOI
31 Jankala H, Harjola VP, Petersen NE, et al. Myosin heavy chain mRNA transform to faster isoforms in immobilized skeletal muscle: A quantitative PCR study. Journal of Appl Physiol. 1997;82(3): 977-982.   DOI
32 Kelley BJ, Harel NY, Kim CY, et al. Diffusion tensor imaging as a predictor of locomotor function after experimental spinal cord injury and recovery. J Neurotrauma. 2014;31(15):1362-1373. http://dx.doi.org/10.1089/neu.2013.3238   DOI
33 Liu M, Bose P, Walter GA, et al. A longitudinal study of skeletal muscle following spinal cord injury and locomotor training. Spinal cord. 2008; 46(7):488-493. http://dx.doi.org/10.1038/sj.sc.3102169   DOI
34 Kozlowski P, Raj D, Liu J, et al. Characterizing white matter damage in rat spinal cord with quantitative MRI and histology. J Neurotrauma. 2008;25(6):653-676. http://dx.doi.org/10.1089/neu.2007.0462   DOI
35 Le Bihan D, Breton E, Lallemand D, et al. MR imaging of intravoxel incoherent motions: Application to diffusion and perfusion in neurologic disorders. Radiology. 1986;161(2):401-407.   DOI
36 Lieber RL, Johansson CB, Vahlsing HL, et al. Long-term effects of spinal cord transection on fast and slow rat skeletal muscle. I. Contractile properties. Exp Neurol. 1986;91(3):423-434.   DOI
37 Lotta S, Scelsi R, Alfonsi E, et al. Morphometric and neurophysiological analysis of skeletal muscle in paraplegic patients with traumatic cord lesion. Paraplegia. 1991;29(4):247-252.   DOI
38 Mahoney ET, Bickel CS, Elder C, et al. Changes in skeletal muscle size and glucose tolerance with electrically stimulated resistance training in subjects with chronic spinal cord injury. Arch Phys Med Rehabil. 2005;86(7):1502-1504.   DOI
39 Martin TP, Stein RB, Hoeppner PH, et al. Influence of electrical stimulation on the morphological and metabolic properties of paralyzed muscle. J Appl Physiol. 1992;72(4):1401-1406.   DOI
40 Midha R, Fehlings MG, Tator CH, et al. Assessment of spinal cord injury by counting corticospinal and rubrospinal neurons. Brain Res. 1987;410(2): 299-308.   DOI
41 Murphy RKJ, Gamble P, Sun P, et al. 144 predicting recovery after a spinal cord injury: The role of diffusion basis spectrum imaging as a biomarker of corticospinal tract integrity. Neurosurgery. 2014;61:207.
42 Midrio M, Danieli Betto D, Betto R, et al. Cordotomy-denervation interactions on contractile and myofibrillar properties of fast and slow muscles in the rat. Exp Neurol. 1988; 100(1):216-236.   DOI
43 Mortazavi MM, Verma K, Harmon OA, et al. The microanatomy of spinal cord injury: A review. Clin Anat. 2015;28(1):27-36. http://dx.doi.org/10.1002/ca.22432   DOI
44 Moseley ME, Cohen Y, Kucharczyk J, et al. Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology. 1990;176(2):439-445.   DOI
45 Narayana PA, Grill RJ, Chacko T, et al. Endogenous recovery of injured spinal cord: Longitudinal in vivo magnetic resonance imaging. J Neurosci Res. 2004;78(5):749-759.   DOI
46 National Spinal Cord Injury Statistical Center. Spinal cord injury facts and figures at a glance. J Spinal Cord Med. 2013;36(1):1-2.   DOI
47 Otis JS, Roy RR, Edgerton VR, et al. Adaptations in metabolic capacity of rat soleus after paralysis. J Appl Physiol. 2004;96(2):584-596.   DOI
48 Pachter BR, Eberstein A. Neuromuscular plasticity following limb immobilization. J Neurocytol. 1984;13(6):1013-1025.   DOI
49 Peterson SL, Anderson AJ. Complement and spinal cord injury: Traditional and non-traditional aspects of complement cascade function in the injured spinal cord microenvironment. Exp Neurol. 2014;258:35-47. http://dx.doi.org/10.1016/j.expneurol. 2014.04.028   DOI
50 Pette D, Staron RS. Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech. 2000; 50(6):500-509.   DOI
51 Prakash YS, Zhan WZ, Miyata H, et al. Adaptations of diaphragm neuromuscular junction following inactivity. Acta Anat (Basel). 1995;154(2): 147-161.   DOI
52 Reimers CD, Finkenstaedt M. Muscle imaging in inflammatory myopathies. Curr Opin Rheumatol. 1997;9(6):475-485.   DOI
53 Rochester L, Chandler CS, Johnson MA, et al. Influence of electrical stimulation of the tibialis anterior muscle in paraplegic subjects. 1. Contractile properties. Paraplegia. 1995;33(8): 437-449.   DOI
54 Ronsyn MW, Berneman ZN, Van Tendeloo VF, et al. Can cell therapy heal a spinal cord injury? Spinal Cord. 2008;46(8):532-539. http://dx.doi. org/10.1038/sc.2008.13   DOI
55 Roy RR, Baldwin KM, Edgerton VR. The plasticity of skeletal muscle: Effects of neuromuscular activity. Exerc Sport Sci Rev. 1991;19:269-312.
56 Scelsi R, Marchetti C, Poggi P, et al. Muscle fiber type morphology and distribution in paraplegic patients with traumatic cord lesion. Acta Neuropathol. 1982;57(4):243-248.   DOI
57 Sekhon LH, Fehlings MG. Epidemiology, demographics, and pathophysiology of acute spinal cord injury. Spine (Phila Pa 1976). 2001;26 (24 Suppl):S2-S12.   DOI
58 Shah PK, Stevens JE, Gregory CM, et al. Lower-extremity muscle cross-sectional area after incomplete spinal cord injury. Arch Phys Med Rehabil. 2006;87(6):772-778.   DOI
59 Simoneau JA, Bouchard C. Human variation in skeletal muscle fiber-type proportion and enzyme activities. Am J Physiol. 1989;257(4 Pt 1): E567-E572.
60 Singh A, Murray M, Houle JD. A training paradigm to enhance motor recovery in contused rats: Effects of staircase training. Neurorehabil Neural Repair. 2011;25(1):24-34. http://dx.doi.org/10.1177/1545968310378510   DOI
61 Song SK, Sun SW, Ju WK, et al. Diffusion tensor imaging detects and differentiates axon and myelin degeneration in mouse optic nerve after retinal ischemia. Neuroimage. 2003;20(3): 1714-1722.   DOI
62 Song SK, Sun SW, Ramsbottom MJ, et al. Dysmyelination revealed through MRI as increased radial (but unchanged axial) diffusion of water. Neuroimage. 2002;17(3):1429-1436.   DOI
63 Stein JM, Padykula HA. Histochemical classification of individual skeletal muscle fibers of the rat. Am J Anat. 1962;110:103-123.   DOI
64 Stevens JE, Liu M, Bose P, et al. Changes in soleus muscle function and fiber morphology with one week of locomotor training in spinal cord contusion injured rats. J Neurotrauma. 2006;23(11): 1671-1681.   DOI
65 Sun SW, Liang HF, Le TQ, et al. Differential sensitivity of in vivo and ex vivo diffusion tensor imaging to evolving optic nerve injury in mice with retinal ischemia. Neuroimage. 2006;32(3): 1195-1204.   DOI
66 Talmadge RJ, Castro MJ, Apple DF, et al. Phenotypic adaptations in human muscle fibers 6 and 24 wk after spinal cord injury. J Appl Physiol. 2002a;92(1):147-154.   DOI
67 Talmadge RJ, Roy RR, Caiozzo VJ, et al. Mechanical properties of rat soleus after long-term spinal cord transection. J Appl Physiol. 2002b;93(4): 1487-1497.   DOI
68 Williams JH, Klug GA. Calcium exchange hypothesis of skeletal muscle fatigue: A brief review. Muscle Nerve. 1995;18(4):421-434.   DOI
69 Tator CH, Fehlings MG. Review of the secondary injury theory of acute spinal cord trauma with emphasis on vascular mechanisms. J Neurosurg. 1991;75(1):15-26.   DOI
70 Tzekou A, Fehlings MG. Treatment of spinal cord injury with intravenous immunoglobulin G: Preliminary evidence and future perspectives. J Clin Immunol. 2014;34 Suppl 1:S132-S138.   DOI
71 Ye F, Baligand C, Keener JE, et al. Hindlimb muscle morphology and function in a new atrophy model combining spinal cord injury and cast immobilization. J Neurotrauma. 2013;30(3): 227-235. http://dx.doi.org/10.1089/neu.2012.2504   DOI