Browse > Article
http://dx.doi.org/10.5207/JIEIE.2011.25.2.103

Design of a Fuzzy Speed Controller and a Fuzzy Angular Acceleration Observer for a Permanent Magnet Synchronous Motor  

Jung, Jin-Woo (동국대(서울) 전자전기공학부)
Choi, Young-Sik (동국대 대학원 전자전기공학부)
Publication Information
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers / v.25, no.2, 2011 , pp. 103-112 More about this Journal
Abstract
This paper proposes a new fuzzy speed controller for the precise speed control of a permanent magnet synchronous motor(PMSM). The proposed control system needs the information of the angular acceleration instead of the load torque, so the third-order fuzzy acceleration observer estimates it. Moreover, the LMI conditions are derived for the existence of the fuzzy acceleration observer and fuzzy speed controller, and the gain matrices of the observer and controller are obtained. It is analytically proven that the proposed observer-based fuzzy speed regulator is exponentially stable. To evaluate the performance of the proposed control algorithm, experimental results as well as simulation results are provided under the conditions of motor parameter and load torque variations. Finally, it is clearly confirmed that the proposed control method can accurately control the speed of a PMSM.
Keywords
Angular Acceleration Observer; Fuzzy Logic Control; PMSM; Speed Control;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. B. Lee and F. Blaabjerg, “Robust and stable disturbance observer of servo system for low-speed operation,” IEEE Trans. Industry Applications, Vol. 43, no. 3, pp. 627-635, 2007.   DOI
2 S. H. Choi, J. S. Ko, I. D. Kim, J. S., Park, and S. C. Hong, “Precise position control using a PMSM with a disturbance observer containing a system parameter compensator,” in IEE Proc. Electr. Power Appl., Vol. 152, no. 6, pp. 1573-1577, 2005.   DOI
3 K. H. Kim and M. J. Youn, “A nonlinear speed control for a PM synchronous motor using a simple disturbance estimation technique,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 524-535, 2002.   DOI
4 Y. Zhang, C. M. Akujuobi, W. H. Ali, C. L. Tolliver, and L. S. Shieh, “Load disturbance resistance speed controller design for PMSM,” IEEE Trans. Ind. Electron., Vol. 53, no. 4, pp. 1198-1208, 2006.   DOI
5 G. Zhu, L. A. Dessaint, O. Akhrif, and A. Kaddouri, “Speed tracking control of a permanent magnet synchronous motor with state and load torque observer,” IEEE Trans. Ind. Electron., Vol. 47, no. 2, pp. 345-355, 2000.
6 H. H. Choi, “LMI-based nonlinear fuzzy observer-controller design for uncertain MIMO nonlinear systems,” IEEE Trans. Fuzzy Systems, Vol. 15, no. 5, pp. 956-971, 2007.   DOI   ScienceOn
7 T. A. Johansen, R. Shorten, and R. Murray-Smith, “On the interpretation and identification of dynamic Takagi-Sugeno fuzzy models,” IEEE Trans. Fuzzy Systems, Vol. 8, no. 3, pp. 297-313, 2000.   DOI
8 M. C. M. Teixeira and S. H. Zak, “Stabilizing controller design for uncertain nonlinear systems using fuzzy models,” IEEE Trans. Fuzzy Syst., Vol. 7, no. 2, pp. 133-142, 1999.   DOI
9 T. Tagaki and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Syst., Man, Cybern., Vol. 15, no. 1, pp. 116-132, 1985.
10 S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, “Linear Matrix Inequalities in System and Control Theory,” SIAM, Philadelphia, PA, 1994.