Browse > Article
http://dx.doi.org/10.7740/kjcs.2022.67.2.121

Effect of Irrigation and Fertigation Treatments on Growth and Yield in Spring Potato Cultivation  

Kim, Jong Hyuk (Department of Applied Life Science, Gyeongsang National University)
Rho, Il Rae (Department of Agronomy, Gyeongsang National University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.67, no.2, 2022 , pp. 121-130 More about this Journal
Abstract
This study was conducted to determine the suitable amount of irrigation and fertigation for the growth and yield of spring potatoes (Solanum tuberosum L.). To investigate the effect of soil moisture content on the growth and yield of potato, five irrigation treatments were performed based on soil moisture tension: -10 kPa, -20 kPa, -30 kPa, -40 kPa, and non-irrigation. The growth and yield among the irrigation treatments was the best in the -10 kPa treatment, where the yield increased by 47% compared to the non-irrigation treatment. To determine the standard of additional fertilizer for fertigation cultivation of spring potatoes, seven treatments were performed, including a control (basic fertilization without additional fertilizer), compound fertilizer (NPK) based on 0.5 times the standard amount of fertilizer (NPK 0.5; N-P2O5-K2O: 2.5-2.2-3.25 kg/10a), NPK 0.8 (N-P2O5-K2O: 4-3.5-5 kg/10a), and NPK 1.2 (N-P2O5-K2O: 6-5.3-7.8 kg/10a), and potassium fertilizer of 2 kg (K 2), 5 kg (K 5), and 7 kg (K 7). The growth and yield among the fertilization treatments was highest in the K 5 treatment, where the yield increased by approximately 27% compared to the control. Therefore, this study suggests that irrigation with -10 kPa or fertigation with K 5 during the tuber initiation and tuber filling stage could increase the yield of spring potatoes.
Keywords
fertigation; fertilizer; irrigation; soil moisture; tuber;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Kolbe, H. and S. Stephan-Beckmann. 1997. Development, growth and chemical composition of the potato crop (Solanum tuberosum L.). II. Tuber and whole plant. Potato Res. 40 : 135-153.   DOI
2 Lee, A. S., S. J. Choi, S. J. Jeon, J. H. Maeng, J. H. Kim, and I. J. Kim. 2016. Estimating the yield of marketable potato of mulch culture using climatic elements. J.C.S.B. 61(1) : 70-77.
3 Lim, J. S., B. H. Lee, S. H. Kang, and T. G. Lee. 2020. Influence of fertilization rteatment using organic amendment based on soil testing on plant growth and nutrient use efficiency in potato. J.C.S.B. 65(4) : 436-446.
4 Liu, C., G. H. Rubaek, F. Liu, and M. N. Andersen. 2015. Effect of partial root zone drying and deficit irrigation on nitrogen and phosphorus uptake in potato. Agric. Water Manag. 15 : 66-76.
5 Markakis, P. 1975. The nutritive value of potato protein. In: Pro-tein Nutritional Quality Foods Feeds, II, Friedman, M., Ed., Dekker, New York. U.S.A. p.471-487.
6 Matteau, J. P., P. Celicourt, G. Letourneau, T. Gumiere, and S. J. Gumirer. 2021. Potato varieties response tosoil matric potential based irrigation. agronomy. 11(2) : 352-362.   DOI
7 Plich, J., M. D. Boguszewska, and W. Marczwwski. 2020. Relations between photosynthetic parameters and drought-induce tuber yield decrease in katahdin-derived potato cultivars. Potato Res. 63 : 463-477.   DOI
8 Ministry of Agriculture, Food and Rural Affairs. https://www.mafra.go.kr/sites/mafra/index.do
9 Nam, S. S., I. H. Choi, S. K. Bae, and J. K. Bang. 2007. Effect of irrigation level on plant growth and bulb yield during bulb development stage of garlic plants. H.S.T. 25(3) : 169-173.
10 Obidiegwu, J. E., G.J. Bryan, H. G. Jones, and A. Prashar. 2015. Coping with drought: Stress and adaptive responses in potato and perspectives for improvement. Front. Plant Sci. 6 : 542-565.
11 Jung, K. S., K. H. Jung, W. K. Park, Y.S. Song, and K.H. Kim. 2010. Establishment of the optimum nitrogen application rate for oriental melon at various growth stages with a fertigation system in a plastic film house. K.J.S.S.F. 43(3) : 349-355.
12 King, B. A., Stark, J. C., and Neibling, H. 2020. Potato production system Stark, J.C.,(Eds.), Chapter 13 Potato irrigation management. pp. 417-446. Switzerland AG: Springer Nature.
13 Choi, G. L., K. H. Yeo, H. C. Rhee, S. C. Lee, N. J. Kang, and H. G. Choi. 2017. Establishment of optimum nitrogen and potassium application for paprika fertigation. KSBEC. 26(2) : 1-6.
14 Clinton, C. S., B. P. Andre, P. E. Eric. 2007. Irrigation best mangement practices for potato. Amer J of Potato Res. 84 : 29-37.   DOI
15 Jeong, H. K., J. H., Sung, and H. J. Lee. 2020. Analysis of social demand for countermeasures in response to extreme weather events in korean agricultural sector. J. of Climate Change Res. 11 : 235-246.   DOI
16 Eissa, M. A. 2018. Efficiency of P fertigation for drip-irrigated potato grown on calcareous sandy soils. Potato res. 62 : 97-108.   DOI
17 Ha, S. G., Y. K. Sonn, K. H. Jung, Y. J. Lee, M. J. Cho, H. J. Yun, and J. K. Sung. 2015. Estimation of growth stage-based nitrogen supply levels for greenhouse semi-forcing zucchini cultivation. KJOAS. 42(4) : 319-324.
18 Jensen, M. E., R. D. Burman, and R. G. Allen. 1990. Evapotranspiration and irrigation water requirements. ASCE manuals and reports on engineering practice no. 70. A.S.C.E. New York, NY. p.360.
19 John, E. B. and R. Gavin. 2009. Advances in potato chemistry and technology(chapter 1). Academic press. Palmerston north. New zealand. p.1-27.
20 Ierna, A. and G. Mauromocale. 2018. Potato growth, yield and water productivity response to different irrigation and fertilization regimes. Agric. Water Manag. 201 : 21-26.   DOI
21 Kim, M. J., H. Y. Kang, T. S. Oh, and J. S. Park. 2017. Drought status and outlook for 2017. J.Korea Water Resour. Assoc. 50 : 56-61.
22 Dhillon, J. S., E. M. Eickhoff, R. W. Mullen, and W. R. Raun. 2019. World potassium use efficiency in cereal crops. J. Agron. 111(2) : 889-896.   DOI
23 Arroita, M., J. Causape, F. A. Comin, J. Diez, J. J. Jimenez, J. Lacarta, C. Lorente, D. Merchan, S. Muniz, E. Navarro, J. Val, and A. Elosegi. 2013. Irrigation agriculture affects organic matter decomposition in semi-arid terrestrial and aquatic ecosystems. J. Hazard. Mater. 263(1) : 139-145   DOI
24 Arafa, A. A., S. Farouk, and H. S. Mohamed. 2011. Effect of potassium fertilizerm biostimulants and effective micro-organisms as well as their interacrion on potato growth, photosynthetics pigments and stem anatomy. J. of plant production. 2(8) : 1017-1035.   DOI
25 Bhattarai, B. and K. C. Swarnima. 2016. effect of potassium on quality and yield of potato tubers-a review. SSRG - IJAES. 6(3) : 7-12.   DOI
26 Food and agriculture organization FAOSTAT https://www.fao.org/faostat.
27 Joe, J. H., H. B. Son, D. C. Jang, J. S. Lim, and H. J. Kim. 2011. RDA Interrrobang 29. RDA. pp. 9-15.
28 Job, A. L. G., R. P. Soratto, A. M. Fernandes, N. S. Assuncao, F. M. Fernandes, and R. Tagi. 2019. Potassium fertilization for fresh market potato production in tropical soils. Agronomy. 111(6) : 3351-3362.   DOI
29 Karam, F., R. Massaad, S. Skaf, J. Breidy, and Rouphael, Y. 2011. Potato response to potassium application rate and timing under srmi-arid conditions. Adv. Hort. Sci., 2011 25(4) : 265-268.
30 Lee, C. S., G. J. Lee, K. Y. Shin, J. H. Ahn, J. T. Lee, and B. K. Hur. (2002) Effect of application added phosphorus and potassium for potato and chinese cabbage in mounded highland soil. K.J.S.S.F. 35(6) : 372-380.
31 Roberts, T. L. and A. E. Johnston. 2015. Phosphorus use efficiency and management in agriculture. Resources, Conservation and Recycli. 105 : 275-281   DOI
32 Kim, S. H., H. B. Sohn, S. Y. Hong, J. H. Nam, D. C. Chang, J. T. Suh, and Y. H. Kim. 2017. Determination of greening and shelf life of potato based on washing and storage temperature condition. Korean J. Crop Sci. 62(1) : 66-72.   DOI
33 Love, S. L., J. C. Stark, and T. Salaiz. 2005. Response of four postato cultivars to rate and timung of nitrogen fertilizer. Amer J of Potato Res. 82 : 21-30.   DOI
34 McCay, C. M., J. B. McCay, and O. Smith. 1987. The nutritive value of potatoes. In: Potato Processing Talburt, W. F. and Smith, O., Eds., AVI, Connecticut. U.S.A. p.287-331.
35 Naumann, M., M. Koch, H. Thiel, A. Gransee, and E. Pawelzik. 2020. The importance of nutrient management for potato production part II: Plant nutrition and tuber quality. Potato Res. 63 : 121-137.   DOI
36 Pinheiro, C. and M. Chaves. 2010. Photosynthesis and drought: can we make metabolic connections from available data. J. Exp. Bot. 62 : 869-882.   DOI
37 Feng, Z., S. Wan, Y. Kang, and S. Liu. 2017. Drip fertigation regime for potato on sandy soil. Emir. J. Food Agric. 29(6) : 476-484.   DOI
38 Shock, C. C., C. Cliton, A. B. Prerira, and E. P. Eldredge. 2007. Irrigation best management practices for potato. A.J.P.R. 84 : 29-37.   DOI
39 Raymundo, R., S. Asseng, R. Robertson, A. Petsakos, G. Hoogenboom, R. Quiroz, G. Hareau, and J. Wolf. 2018. Climate change impact on global potato production. Eur J Agron. 100 : 87-98.   DOI
40 Jama-Rodzenska, A., G. Janik, A. Walczak, K. A. Sowinska, and J. Sowinski. 2021. Tuber yield and water efficiency of early potato varieties (Solanum tuberosum L.) cultivated under various irrigation levels. Sci. Rep. 11 : 19121.   DOI
41 Reyes-Cabrera, J., L. Zotarelli, D. L. Rowland, M. D. Dukes, and S. A. Sargent. 2014. Drip as alternative Irrigation method for potato in florida sandy soils. Am. J. Potato Res. 91 : 504-516.   DOI
42 Rural Development Administration (RAD). 2018. Guide of agricultural technology(potato). RDA. Jeonju. Korea. pp.154.
43 Song, Y. S., H. J. Jun, W. K. Park, B. G. Jung, K. S. Jung, K. S. Lee, and Y. S. Yoon. 2008. Determination of optimal application rates of phosphorus and potassium fertilizers for paddy rice. K.J.S.S.F. 41(2) : 75-82.
44 Slavador, R. M. and D. M. Banoc 2020. Yield response of sweet potato (Ipomoea batatas L. Lam) to soil solarization and nutrient management under micro-fertigation technique. SVU-IJAS. 2(2) : 45-59.
45 Raun, W. R. and G. V. Johnson. 1999. Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. J. Agron. 91(4) : 357-363.   DOI