Browse > Article
http://dx.doi.org/10.7740/kjcs.2020.65.4.314

Development of Disease-resistant Japonica Rice Varieties and Effects of Pyramiding Resistance Genes  

Kim, Woo-Jae (Crop breeding Division, National Institute of Crop Science, Rural Development Administration)
Baek, Man-Kee (Crop breeding Division, National Institute of Crop Science, Rural Development Administration)
Park, Hyeon-Su (Crop breeding Division, National Institute of Crop Science, Rural Development Administration)
Lee, Geon-Mi (Crop breeding Division, National Institute of Crop Science, Rural Development Administration)
Lee, Chang-Min (Crop breeding Division, National Institute of Crop Science, Rural Development Administration)
Kim, Seok-Man (Crop breeding Division, National Institute of Crop Science, Rural Development Administration)
Cho, Young-Chan (Crop breeding Division, National Institute of Crop Science, Rural Development Administration)
Seo, Jeong-Phil (Crop breeding Division, National Institute of Crop Science, Rural Development Administration)
Jeong, O-Young (Crop breeding Division, National Institute of Crop Science, Rural Development Administration)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.65, no.4, 2020 , pp. 314-326 More about this Journal
Abstract
This study was carried out to develop a resistant variety against the K3a race of bacterial blight, Xanthomonas oryzae pv. oryzae, through expansion and pyramiding of resistance genes. To develop an elite bacterial blight-resistant cultivar, the breeding process and bacterial blight resistance reactions in advanced backcross lines (ABLs) were analyzed. ABLs21 which contain Xa3 and Xa21, were developed by double backcrossing japonica cultivar Hwanggeumnuri, which has bacterial blight resistant Xa3 gene, and indica variety IRBB21, which havs Xa21 gene, followed by disease resistance bioassay and marker-assisted selection. The resistance genes of ABLs21 were amplified by PCR with the molecular markers 9643.T4 (Xa3) and U1/I1 (Xa21). Hwanggeumnuri and IRBB3 showed resistance reactions against K1, K2, and K3 races, and a susceptible reaction against K3a, K4, and K5 races. IRBB21 showed resistance reactions against K2, K3, K3a, K4 and K5 races, and a susceptible reaction against K1 race. Hwanggeumnuri showed susceptible reactions at the seedling, tillering and adult stages (all stages), whereas ABL21-1 showed moderate resistance at the tillering stage. ABL21-1 showed stable resistance against 18 isolates of K3a race, and the lesion length was shorter than that of the donor parents. In cluster analysis, the HB4032 isolate showed the highest pathogenicity among the 18 isolates. The molecular marker polymorphisms and average substituted chromosome segment lengths of ABLs21 were 63.2 % and 86.1 cM, respectively. Insertion of the donor chromosomal segments occurred in the predicted region of the Xa21 gene of ABLs21.
Keywords
bacterial blight; chromosome segments; gene pyramiding; multi-resistant; rice;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Cao, Y., X. Ding, M. Cai, J. Zhao, Y. Lin, X. Li, C. Xu, and S. Wang. 2007. The expression pattern of a rice disease resistance gene Xa3/Xa26 is differentially regulated by the genetic backgrounds and developmental stages that influence its function. Genetics 177 : 523-533.   DOI
2 Park, H. S. 2016. Pyramiding of effective resistance genes for the disease resistance improvement to bacterial blight in japonica rice. Doctoral Thesis Ph. D., Department of Agronomy, Graduate School, Chungnam National University, Daejeon, Korea.
3 RDA. 1992 - 2016. Annual Report of Development New Variety of Crops.
4 RDA. 2012. Manual for Standard Evaluation Method in Agricultural Experiment and Research.
5 Shin, M. S., T. H. Noh, K. Y. Kim, S. H. Shin, J. K. Ko, and J. K. Lee. 2005. Reaction of Korean rice varieties to new bacterial blight race, K3a. Korean J. Crop Sci. 50(3) : 151-155.
6 Yano, M., Y. Katayose, M. Ashikari, U. Yamanouchi, L. Monna, T. Fuse, T. Baba, K. Yamamoto, Y. Umehara, and T. Sasaki. 2000. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12 : 2473-2484.   DOI
7 Zhang, D. P., Y. F. Xie, and T. W. Mew. 1984. Studies on adult plant resistance to bacterial blight in rice. Sci. Agric. Sin. 1984-1 : 40-50.
8 Zhang, Q. and T. W. Mew. 1985. Adult-plant resistance of rice cultivars to bacterial blight. Plant Dis. 69 : 896-898.
9 Zhang, Q. and T. W. Mew. 1989. Types of resistance in rice to bacterial blight. In bacterial Blight of Rice. Proceedings of the International Workshop on Bacterial Blight of Rice, 14-18 March 1988. International Rice Research Institute, P.O. Box 933, Manila, Philippines. pp. 125-134..
10 Suh, J. P., T. H. Noh, K. Y. Kim, J. J. Kim, Y. G. Kim, and K. Kshirod. 2009. Expression levels of three bacterial blight resistanc genes against K3a race of Korea by molecular and phenotype analysis in japonica rice (O. sativa L). J. crop Sci. Biotechnol. 12 : 103-108.   DOI
11 Suh, J. P., J. U. Jeung, T. H. Noh, Y. C. Cho, S. H. Park, H. S. Park, M. S. Shin, C. K. Kim, and K. J. Kshirod. 2013. Development of breeding lines with three pyramided resistance genes that confer broad-spectrum bacterial blight resistance and their molecular analysis in rice. Rice. 6 : 5.   DOI
12 Takeuchi, H. 1930. Occurrence of bacterial leaf blight of rice. Bull. Chosen Sotokufu Agric. Exp. Stn. 5(1) : 62-64.
13 Veracruz, C. M., J. Bai, I. Oa, H. Leung, R. J. Nelson, T. W. Mew, and J. E. Leach. 2000. Predictin durability of a disease resistance gene based on an assessment of the fitness loss and epidemiological consequences of avirulence gene mutation. Proc. Natl. Acad. Sci., USA. 97 : 13500-13505.   DOI
14 Wang, G. L., T. E. Holsten, W. Y. Song, H. P. Wang, and P. Ronald. 1995. Construction of rice bacterial artifical chromosome and identification of clones linked to the Xa21 disease resistance locus. Plant. 7 : 525-533.
15 Kang, J. W., P. Yang, Y. T. Yun, and S. N. Ahn. 2011. Mapping grain weight QTL using near isogenic lines from an interspecific cross. Kor. J. Breed. Sci. 43(4) : 225-231.
16 Choi, Y. C., M. S. Yun, M. S. Han, and Y. S. Cho. 1981. A study of Bacterial groups distribution of Xanthomonas oryzae (Uyeda et Ishiyama) Dowson in Korea. Annual Report for 1981. RDA. pp. 294-300.
17 Ho, B. L. and W. C. Lim 1976. Effects of bacterial blight on the yield of rice at various stages of growth. MARDI Res. Bull. 4(2) : 13-22.
18 Horino, O. and A. Ezuka. 1973. A simple screening method for bacterial leaf blight resistance of rice derived from Wase Aikoku 3. Proc. Assoc. Plant Prot. Hokuriku 21 : 29-32.
19 Huang, N., E. Angeles, J. Doming, G. Magpantay, S. Singh, G. Zhang, N. Kumaravadivel, J. Bennett, and G. Khush. 1997. Pyramiding of bacterial blight resistance genes in rice: markerassisted selection using RFLP and PCR. Theor. Appl. Genet. 95 : 313-320.   DOI
20 Inoue, Y. and Y. Tsuda. 1960. Damage caused by bacterial leaf blight of rice. Shokubutsu Boeki (Plant Prot.) 14 : 348-352.
21 Kang, M. H., T. H. Noh, B. C. Lee, S. M. Kim, and H. M. Kim. 2015. Race distribution of rice bacterial leaf blight from 2012 to 2014 and disease severity by rice bacterial leaf blight strains and combinations to IRBB series for resistnat analysis. J. Agri. & Life Sci. 46 : 1-8.
22 Kaul, M. H. and K. K. Sharma. 1987. Bacterial blight in rice-a review. Biol. Zentralbl. 106 : 141-167.
23 Kwon, T., J. H. Lee, S. K. Park, U. H. Hwang, J. H. Cho, D. Y. Kwak, Y. N. Youn, Y. S. Yeo, U. C. Song, J. Nam, H. W. Kang, M. H. Nam, and D. S. Park. 2012. Fine mapping and identification of candidate rice genes associated with qSTV11SG, a major QTL for rice stripe disease resistance. Theoretical and Applied Genetics. DOI 10.1007/s00122-012-1893-8.   DOI
24 National Crop Pest Management System. 2020. Available from:Philippines. http://ncpms.rda.go.kr/npms. Accessed March 20, 2020.
25 McCouch, S. R., L. Teytelman, Y. B. Xu, K. B. Lobos, K. Clare, M. Walton, B. Y. Fu, R. Maghirang, Z. K. Li, Y. Z. Xing, Q. F. Zhang, I. Kono, M. Yano, R. Fjellstom, G. Declerck, D. Scheider, S. Cartinhour, D. Ware, and L. Stein. 2002. Development and mapping of 2240 new SSR markers of rice (Oryza sativa L.). DNA Res. 9 : 199-207.   DOI
26 Mew, T. W., A. M. Alvarez, J. E. Leach, and J. Swings. 1993. Focus on bacterial blight of rice. Plant Dis. 77 : 5-12.   DOI
27 Mew, T. W., C. M. Veracruz, and E. S. Medalla. 1992. Changes in race frequency of Xanthomonas oryzae pv. oryzae in response to rice cultivars planted in the Philippines. Plant Dis. 76 : 1029-1032.   DOI
28 Noh, T. H., K. Y. Kim, D. G. Lee, H. K. Shim, M. Y. Kang, and J. C. Park. 2008. Disease Incidence, Yield and quality comparisons among rice varieties with different resistance to bacterial leaf blight. Res. Plant Dis. 14(3) : 171-175.   DOI
29 Noh, T. H., D. K. Lee, M. H. Kang, M. S. Shin, H. K. Shim, and S. Y. Na. 2003. Identification of new race of Xanthomonas oryzae pv. oryzae (Xoo) in Korea. Phytopathology. 93 : S66.
30 Noh, T. H., D. K. Lee, H. K. Shim, S. J. Seo, M. Y. Choi, J. C. Park, C. H. Paik, and H. S. Kim. 2013. Changes distribution and disease occurrence of rice bacterial leaf blight on rice in Korea. J. Agri. & Life Sci. 44 : 5-10.
31 Ou, S. H. 1985. Rice Diseases. 2nd ed. Commonwealth Mycological Institute, Kew, Surrey, England. pp. 61-96.
32 Mazzola, M., J. E. Leach, T. W. Mew, and F. F. White. 1993. Effect of plant age on IRBB21 resistance to Xanthomonas oryzae pv. oryzae (Xoo). Int. Rice Res. Notes 18(1) : 21-22.