Browse > Article
http://dx.doi.org/10.7740/kjcs.2020.65.4.274

Analysis of Varietal Differences in Pre-harvest Sprouting of Rice using RNA-Sequencing  

Choi, Myoung-Goo (National Institute of Crop Science, Rural Development Administration)
Lee, Hyen-Seok (National Institute of Crop Science, Rural Development Administration)
Hwang, Woon-Ha (National Institute of Crop Science, Rural Development Administration)
Yang, Seo-Yeong (National Institute of Crop Science, Rural Development Administration)
Lee, Yun-Ho (National Institute of Crop Science, Rural Development Administration)
Lee, Chung-gun (National Institute of Crop Science, Rural Development Administration)
Yun, Song Joong (Department of Crop Science & Biotechnology, Chonbuk National University)
Jeong, Jae-Hyeok (National Institute of Crop Science, Rural Development Administration)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.65, no.4, 2020 , pp. 274-283 More about this Journal
Abstract
Seed dormancy is an adaptive trait in which seeds do not germinate under unfavorable environmental conditions. Low dormancy seeds are easily germinated under optimal environmental conditions, and these characteristics greatly reduce the yield and quality of crops. In the present study, we compared the pre-harvest sprouting (PHS) rate of two cultivars, Joun and Jopyeong, using the Winkler scale after heading day and temperature of the test. The PHS rate increased as the Winkler scale after heading day increased from 700℃ to 1100℃ and the temperature of the test increased. In all conditions, the PHS rate of Jopyeong was higher than that of Joun. RNA-sequencing was used to analyze the cause of the high PHS rate. We analyzed the biological metabolic processes related to the abscisic acid (ABA) metabolite pathway using the KEGG mapper with selected differentially expressed genes in PHS seeds. We found that the expression of ABA biosynthesis genes (OsNCEDs) was down-regulated and that ABA catabolic genes (OsCYP707As) was up-regulated in PHS seeds. However, the quantitative real-time PCR results showed that Joun had a higher expression of OsNCEDs than that of Jopyeong, but OsCYP707As did not yield a significant result. Joun displayed higher ABA content than that of Jopyeong not only during ripeness time but also during PHS treatment. Taken together, we provided evidence that the ABA content remaining in the seed is important to the PHS rate, which is determined by the expression level of the ABA biosynthesis gene OsNCEDs.
Keywords
ABA; pre-harvest sprouting; rice; RNA-sequencing;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Park, J.-S. and H.-D. Kim. 2009. Viviparous germination characteristics of rice varieties adaptable to central region of Korea. Korean Journal of Crop Science 54(3) : 241-248.
2 Shon, J., J. Kim, H. Jung, B. Kim, K. Choi, and W. Yang. 2014. Effect of pre-harvest sprouting on seed viability, germination and seedling emergence rate of rice. Korean Journal of Crop Science/Hanguk Jakmul Hakhoe Chi. 59(4) : 427-434.   DOI
3 Suh, K. and Y. Kim. 1994. Varietal difference in viviparous germination at different days after heading and temperature conditions in rice. Korean Journal of Crop Science 32(2) : 187-192.
4 Shu, K., H. Zhang, S. Wang, M. Chen, Y. Wu, S. Tang, C. Liu, Y. Feng, X. Cao, and Q. Xie. 2013. ABI4 regulates primary seed dormancy by regulating the biogenesis of abscisic acid and gibberellins in Arabidopsis. PLoS Genetics 9(6) : e1003577.   DOI
5 Tuan, P. A., R. Kumar, P. K. Rehal, P. K. Toora, and B. T. Ayele. 2018. Molecular mechanisms underlying abscisic acid/gibberellin balance in the control of seed dormancy and germination in cereals. Front Plant Sci. 9 : 668.   DOI
6 Walker-Simmons, M. 1987. ABA Levels and Sensitivity in Developing Wheat Embryos of Sprouting Resistant and Susceptible Cultivars. Plant Physiology. 84(1) : 61-66.   DOI
7 Zhu, G., N. Ye, and Zhang, J. 2009. Glucose-Induced Delay of Seed Germination in Rice is Mediated by the Suppression of ABA Catabolism Rather Than an Enhancement of ABA Biosynthesis. Plant and Cell Physiology 50(3) : 644-651.   DOI
8 Baek, J. and N. Chung. 2014. Pre-harvest sprouting variation of rice seeds located on each panicle position according to grain filling days. Korean Journal of Crop Science/Hanguk Jakmul Hakhoe Chi. 59(1) : 22-26.   DOI
9 Anders, S. and W. Huber. 2010. Differential expression analysis for sequence count data. Nature Precedings.
10 Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, et al. 2000. Gene Ontology: tool for the unification of biology. Nature Genetics 25(1) : 25-29.   DOI
11 Chono, M., I. Honda, S. Shinoda, T. Kushiro, Y. Kamiya, E. Nambara, N. Kawakami, S. Kaneko, and Y. Watanabe. 2006. Field studies on the regulation of abscisic acid content and germinability during grain development of barley: molecular and chemical analysis of pre-harvest sprouting. J. Exp. Bot. 57(10) : 2421-2434.   DOI
12 Fang, J., C. Chai, Q. Qian, C. Li, J. Tang, L. Sun, Z. Huang, X. Guo, C. Sun, and M. Liu. 2008. Mutations of genes in synthesis of the carotenoid precursors of ABA lead to pre-harvest sprouting and photo-oxidation in rice. The Plant Journal 54(2) : 177-189.   DOI
13 Hu, Q., C. Lin, Y. Guan, M. S. Sheteiwy, W. Hu, and J. Hu. 2017. Inhibitory effect of eugenol on seed germination and pre-harvest sprouting of hybrid rice (Oryza sativa L.). Sci Rep-Uk. 7(1) : 5295.   DOI
14 Ko, J.-C., B.-k. Kim, K.-S. Lee, W.-Y. Choi, H.-R. Choi, E. Cho, and S.-J. Yu. 2005. Varietal difference in enzyme activities during preharvest germination of rice. Korean Journal of Crop Science 50(6) : 378-383.
15 Ju, Y. C., S. W. Han, J. S. Park, and K. Y. Park. 2000. Effective screening method for viviparous germination of rice. Korean Journal of Crop Science 45(2) : 103-107.
16 Kang, S., J. Shon, H. Kim, S. Kim, J. Choi, J. Park, J. Sim, and W. Yang. 2018. Analysis of genetic variation in pre-harvest sprouting at different cumulative temperatures after heading of rice. Korean Journal of Crop Science 63(1) : 8-17.   DOI
17 Kim, S.-J., J.-G. Won, D.-J. Ahn, S.-D. Park, and C.-D. Choi. 2008. Influence of viviparous germination on quality and yield in rice. Korean Journal of Crop Science 53(spc) : 15-18.
18 Kucera, B., M. A. Cohn, and G. Leubner-Metzger. 2005. Plant hormone interactions during seed dormancy release and germination. Seed Science Research 15(4) : 281-307.   DOI
19 Lee, M., S. Park, and R. Park. 1985. Effect of pre-harvest sprouting on yield and grain quanlity in rice. Annual Res Rep NICS, RDA, pp. 477-480.
20 Liu, Y., J. Fang, F. Xu, J. Chu, C. Yan, M. R. Schlappi, Y. Wang, and C. Chu. 2014. Expression patterns of ABA and GA metabolism genes and hormone levels during rice seed development and imbibition: A comparison of dormant and non-dormant rice cultivars. J. Genet. Genomics. 41(6) : 327-338.   DOI
21 Park, K. B. and R. K. Park. 1984. Studies on the viviparous germination of indica × japonica type varieties in paddy rice. Korean Journal of Crop Science/Hanguk Jakmul Hakhoe Chi. 29(1) : 15-18.
22 Oh, S., C. Kim, C. Kim, S. Kim, and J. Lee. 1987. Influence of viviparous germination on quality and yeild potential of rice. Res Rep RDA (Crops). 29(1) : 68-73.