Analysis of Growth Response and Gene Expression by Waterlogging Stress on B73 Maize |
Go, Young Sam
(Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration)
Kim, Jung-Tae (Planning and Coordination Division, National Institute of Crop Science, Rural Development Administration) Bae, Hwan Hee (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) Son, Beom-Young (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) Yi, Gibum (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) Ha, Jun Young (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) Kim, Sun-Lim (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) Baek, Seong-Bum (Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration) |
1 | Alamgir, H. and S. N. Uddin. 2011. Mechanisms of waterlogging tolerance in wheat: morphological and metabolic adaptations under hypoxia or anoxia. Aust. J. Crop Sci. 5(9) : 940-1110. |
2 | Arora, K., K. K. Panda, S. Mittal, M. G. Mallikarjuna, R. R. Atmakuri, K. D. Prasanta, and T. Nepolean. 2017. RNAseq revealed the important gene pathways controlling adaptive mechanisms under waterlogged stress in maize. Sci. Rep. 7 : 10950. DOI |
3 | Ashraf, M. A., M. S. Ahmad, M. Ashraf, F. Al-Qurainy, and M. Y. Ashraf. 2011. Alleviation of waterlogging stress in upland cotton (Gossypium hirsutum L.) by exogenous application of potassium in soil and as a foliar spray. Crop Pasture Sci. 62 : 25-38. DOI |
4 | Boru, G., T. Vantoai, J. Alves, D. Hua, and M. Knee. 2003. Response of soybean to oxygen deficiency and elevated root-zone carbon dioxide concentration. Ann. Bot. 91(4) : 447-453. DOI |
5 | Chalivendra, C. S. and M. S. Martin. 2003. Molecular and cellular adaptations of maize to flooding stress. Ann. Bot. 91(2) : 119-127. DOI |
6 | Christianson, J. A., D. J. Llewellyn, E. S. Dennis, and I. W. Wilson. 2010. Global gene expression responses to waterlogging in roots and leaves of cotton (Gossypium hirsutum L.). Plant Cell Physiol. 51(1) : 21-37. DOI |
7 | Gill, M. B., F. Zeng, L. Shabala, G. Zhang, M. Yu, V. Demidchik, S. Shabala, and M. Zhou. 2019. Identification of QTL related to ROS formation under hypoxia and their association with waterlogging and salt tolerance in barley. Int. J. Mol. Sci. 20(3) : 699-714. DOI |
8 | Komatsu, S., C. Han, Y. Nanjo, M. Altaf-Un-Nahar, K. Wang, D. He, and P. Yang. 2013. Label-free quantitative proteomic analysis of abscisic acid effect in early-stage soybean under flooding. J. Proteome Res. 12(11) : 4769-4784. DOI |
9 | Kong, F., A. Oyanagi, and S. Komatsu. 2010. Cell wall proteome of wheat roots under flooding stress using gel-based and LC MS/MS based proteomics approaches. Biochim. Biophys. Acta 1804(1) : 124-136. DOI |
10 | Koo, S. C, H. T. Kim, B. K. Kang, Y. H. Lww, K. W. Oh, H. Y. Kim, I. Y. Back, H. T. Yun, and M. S. Choi. 2014. Screening of Flooding Tolerance in Soybean Germplasm Collection. Korean J. Breed. Sci. 46(2) : 129-135 DOI |
11 | Liu, F., T. Vantoai, G. Bock, L.D. Linford, and J. Quackenbush. 2005. Global transcription profiling reveals novel insights into hypoxic response in Arabidopsis. Plant Physiol. 137 : 1115-1129. DOI |
12 | Liu, Z., K. Sunita, L. Zhang, and W. Doreen. 2012. Characterization of miRNAs in response to short-term waterlogging in three inbred lines of Zea mays. PLoS ONE 7(6) : e39786. DOI |
13 | Ren, B. Z., J. W. Zhang, X. Li, X. Fan, S. T. Dong, B. Zhao, and P. Liu. 2014. Effect of waterlogging on leaf senescence characteristics of summer maize in the field. J. Appl. Ecol. 25(4) : 1022-1028. |
14 | Moon, J., S. Shin, H. C. Kim, K. Song, J. Y. Kim, K. Kim, and B. Lee. 2018. Assessment of the candidate genes of expression markers associated with drought stress in maize seedlings. Korean J. Breed. Sci. 50(3) : 224-235. DOI |
15 | Qiu, F. Z., Y. L. Zheng, Z. L. Zhang, and S. Z. Xu. 2007. Mapping of QTL associated with waterlogging tolerance during the seedling stage in maize. Ann. Bot. 99(6) : 1067-1081. DOI |
16 | Ren, B., J. Zhang, S. Dong, P. Liu, and B. Zhao. 2016. Effects of waterlogging on leaf mesophyll cell ultrastructure and photosynthetic characteristics of summer maize. PLoS ONE 11(9) : e0161424. DOI |
17 | Salah, A., J. Li, J. Ge, C. Cao, H. Li, Y. Wang, Z. Liu, M. Zhan, and M. Zhao. 2019. Morphological and physiological responses of maize seedlings under drought and waterlogging. J. Agr. Sci. Tech. 21(5) : 1199-1214. |
18 | Sallam, A. and H. D. Scott. 1987. Effects of prolonged flooding on soybeans during early vegetative growth. Soil Sci. 144(1) : 61-66. DOI |
19 | Tang, B., S. Xu, X. Zou, Y. Zheng, and F. Qiu. 2010. Changes of antioxidative enzymes and lipid peroxidation in leaves and roots of waterlogging-tolerant and waterlogging-sensitive maize genotypes at seedling stage. Agric. Sci. China. 9 : 651-661. DOI |
20 | Yamauchi, T., I. Rajhi, and M. Nakazono. 2011. Lysigenous aerenchyma formation in maize root is confined to cortical cells by regulation of genes related to generation and scavenging of reactive oxygen species. Plant Signal. Behav. 6(5) : 759-761. DOI |
21 | Yordanova, R. Y, K. G Zheng, Z. G. Stoinova, and L. P. Popova. 2004. Changes in the leaf polypeptide patterns of barley plants exposed to soil flooding. Biologia Plantarum 48(2) : 301-304. DOI |