Browse > Article
http://dx.doi.org/10.7740/kjcs.2019.64.1.001

Characterization of Heading- and Yield-related Gene Loci in the Cheongcheong/Nagdong Doubled Haploid Line using Rice QTLs  

Jang, Yoon-Hee (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
Park, Jae-Ryoung (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
Kim, Kyung-Min (School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.64, no.1, 2019 , pp. 1-17 More about this Journal
Abstract
A quantitative trait loci (QTL) analysis of traits related to heading and yield was performed develop rice cultivars that are both early maturing and panicle weight type varieties. Our analysis included 120 strains of the Cheongcheong Nagdong doubled haploid (CNDH) variety. An observational growth experiment was conducted to identify genetic agronomic traits of CNDH. Heading date, ten plant weight, moisture, thousand grain weight, and yield had a normal distribution based on the frequency distribution table of the observational growth data. The QTL analysis found one heading-related and nine yield-related QTLs. The LOD of 2.85 was the largest in QTLs for heading date (QHD), 5.39 in QTLs for ten plant weight (QTPW), 3.92 in QTLs for moisture (QM), 4.80 in QTLs for thousand grain weight (QTGW), and 3.7 in QTLs for yield (QY). Genomic analysis detected 58 candidate genes on chromosome 2, 3, 7, 8, and 10. Among those, we found Rcd1 protein and OsERF3 gene in QM, MtN3 and zinc finger protein genes in QTGW, and OsNAC3 protein gene in QY. If further analysis reveals the presence of genes related to water content, thousand grain weight or yield in the CNDH stains, we can develop a selection of varieties that will be capable of coping with climate change and will contribute to global food problems.
Keywords
CNDH; Early maturing; Panicle weight type; QTL;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Choung, J. I., K. Y. Kim, Y. H. Choi, W. Y. Choi, J. C. Ko, M. K. Oh, H. C. Hong, S. Y. Lee, and M. C. Lee. 2004. Analysis of Chemical and Eating Quality Character of the Early Rice Variety at Cultured in the Southern Plain area. Journal of the Korean Society of International Agriculture. 16(4) : 345-349
2 Cosgriff, A. J. and A. J. Pittard, 1997. A topological model for the general aromatic amino acid permease, AroP, of Escherichia coli. Journal of Bacteriology. 179(10) : 3317-3323.   DOI
3 Gindullis, F. and I. Meier, 1999. Matrix attachment region binding protein MFP1 is localized in discrete domains at the nuclear envelope. The Plant Cell. 11(6) : 1117-1128.   DOI
4 Jaspers, P., T. Blomster, M. Brosche, J. Salojarvi, R. Ahlfors, J. Vainonen, and K. Overmyer. 2009. Unequally redundant RCD1 and SRO1 mediate stress and developmental responses and interact with transcription factors. The Plant Journal. 60(2) : 268-279.   DOI
5 Lu, C. F., Shen, L. S., Tan, Z., Xu, Y., He, P., Chen, Y., and Zhu, L. 1996. Comparative mapping of QTLs for agronomic traits of rice across environments using a doubled haploid population. Theoretical and Applied Genetics. 93(8) : 1211-1217.   DOI
6 Ooka, H., K. Satoh, K. Doi, T. Nagata, Y. Otomo, K. Murakami, and Y. Hayashizaki. 2003. Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research. 10(6) : 239-247.   DOI
7 Tsutsumi, N., S. Takusagawa, H. Suzuki, and A. Hirai. 1996. Molecular cloning and nucleotide sequencing of nuclear genes coding for the chloroplast ribosomal proteins L13, L24, L28 of rice (Oryza sativa L.). Plant Science. 121(2) : 167-174.   DOI
8 Wan, L., J. Zhang, H. Zhang, Z. Zhang, R. Quan, Zhou, and R. Huang. 2011. Transcriptional activation of OsDERF1 in OsERF3 and OsAP2-39 negatively modulates ethylene synthesis and drought tolerance in rice. PloS One. 6(9) : e25216.   DOI
9 Yano, M., Harushima, Y., Nagamura, Y., Kurata, N., Minobe, Y., and Sasaki, T. 1997. Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theoretical and Applied Genetics. 95(7) : 1025-1032   DOI
10 Yuan, M., J. Zhao, R. Huang, X. Li, J. Xiao, and S. Wang. 2014. Rice MtN3/saliva/SWEET gene family: evolution, expression profiling, and sugar transport. Journal of Integrative Plant Biology. 56(6) : 559-570.   DOI
11 Siddiqua, B. S., Qamarunnisa, and A. Azhar. 2016. RCD1 homologues and their constituent WWE domain in plants: analysis of conservation through phylogeny methods. Biologia. 71(6) : 642-650.   DOI
12 Xiao, J., Li, J., Yuan, L., and Tanksley, S. D. 1996. Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theoretical and Applied Genetics. 92(2) : 230-244.   DOI
13 Zhou, B., J. Z. Lin, D. Peng, Y. Z. Yang, M. Guo, D. Y. Tang, and X. M. Liu. 2017. Plant architecture and grain yield are regulated by the novel DHHC-type zinc finger protein genes in rice (Oryza sativa L.). Plant Science. 254 : 12-21.   DOI