Browse > Article
http://dx.doi.org/10.7740/kjcs.2018.63.3.239

Quantification of Isoflavone Malonylglucosides in Soybean Seed during Germination  

Lee, Ju-Won (Dept. of Biotechnology, SoonChunHyang Univ.)
Yi, Yoo-Jung (Dept. of Biotechnology, SoonChunHyang Univ.)
Lee, Ju-Hee (Dept. of Biotechnology, SoonChunHyang Univ.)
Jo, Min-Sik (Dept. of Biotechnology, SoonChunHyang Univ.)
Choi, Do-Jin (Dept. of Biotechnology, SoonChunHyang Univ.)
Ma, Mu-Hyun (Dept. of Biotechnology, SoonChunHyang Univ.)
Kim, Hong-Sik (Dept. of Southern Area Crop Science, NICS, RDA)
Kim, Dae-Ok (Dept. of Food Science and Biotechnolooy, KyungHee Univ.)
Yun, Hong-Tae (Dept. of Central Area Crop Science, NICS, RDA)
Kim, Yong-Ho (Dept. of Biotechnology, SoonChunHyang Univ.)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.63, no.3, 2018 , pp. 239-247 More about this Journal
Abstract
Soybean produces three major types of isoflavones, daidzein, genistein, and glycitein aglycones and their glucosides and malonylglucosides. It has been known that malonylated glucosides are rapidly converted to their corresponding aglycones due to the unstable thermolabile glucoside malonates; therefore, the analytical study of malonylated glucosides has been insufficient. In this study, we analyzed the malonylglucoside content in soybean seeds. Isoflavone analysis of three soybean cultivars revealed that 81.5~90.0% of the total isoflavones were malonylglucosides, whereas aglycones were rarely detected. Moreover, the total isoflavone content increased during a 5-day germination period where growth regulators and coumaric acid treatments tended to yield higher isoflavone content than the normal germination treatment, however the differences were not significant; notably, the isoflavone accumulation trend continued with additional germination days. The content of malonylglucoside was higher than that of other isoflavones, which was 83.7~86.6% of the total isoflavone content in seeds with a 3-day germination period. Furthermore, isoflavones were significantly accumulated in the hypocotyl of seedlings with a 5-day germination period. The content of isoflavone in the hypocotyl of the Pungsannamul-kong was 10,240 ug/g when treated with coumaric acid, which was considerably higher than that of other cultivars and treatments. Additionally, soybean seeds heated at $60^{\circ}C$ for 1 hour produced higher isoflavone content than non-heated soybean seeds. Our results show that it is possible to increase the isoflavone content in soybean seeds through various treatments.
Keywords
germination; isoflavone; malonylglucoside; soybean;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Wu, A. H., R. G. Ziegler, A. Nomura, D. W. West, L. N. Kolonel, P. L. Horn-Ross, R. N. Hoover, and M. C. Pike. 1998. Soy intake and risk of breast cancer in Aans and Americans. Clin. Nutr. 68 : 1437S-1443S.
2 Wu, Q., M. Wang, and J. E. Simon. 2003. Determination of isoflavones in red clover and related species by HPLC combined with ultraviolet and mass spectrometric detection. J. Chromatogr. A. 1016 : 195-209.   DOI
3 Yoneyama, K., T. Akashi, and T. Aoki. 2016. Molecular characterization of soybean pterocarpan 2-dimethylallyltransferase in glyceollin biosynthesis: Local gene and whole-genome duplications of prenyltransferase gene led to the structural diversity of soybean prenylated isoflavonoids. Plant Cell Physiol. 57(12) : 2497-2509.   DOI
4 Hutchins, A. M., J. L. Slavin, and J. W. Lampe. 1995. Urinary isoflavonoid phytoestrogen and lignan excretion after consumption of fermented and unfermented soy products. J. Am. Diet. Assoc. 95 : 545-551.   DOI
5 Jeon, S. H., K. A. Lee, and K. E. Byoun. 2005. Studies on changes of isoflavone and nutrients during germination of soybean varieties. Korean J. Human Ecology 14(3) : 485-489.
6 Kim, S. R., H. D. Hong, and S. S. Kim. 1999. Some properties and contents of isoflavone in soybean and soybean foods. Korea Soybean Digest. 16(2) : 35-46.
7 Yu, J., X, Bi, B. Yu, and D. Chen. 2016. Isoflavones: Anti-inflammatory benefit and possible caveats. Nutrients 8. 361; doi:10.3390/nu8060361   DOI
8 Yuk, H. J., Y. H. Song, M. J. Curtis-Long, D. W. Kim, S. G. Woo, Y. B. Lee, Z. Uddin, C. Y. Kim, and K. H. Park. 2016. Ethylene induced a high accumulation of dietary isoflavones and expression of isoflavonoid biosynthetic genes in soybean leaves. J. Agric. Food Chem. 64 : 7315-7324.   DOI
9 Wang, H. J. and P. A. Murpy. 1994. Isoflavone composition of American and Japanese soybeans in Iowa : Effects of variety, crop year, and location. J. Agric. Food Chem. 42 : 1674-1677.   DOI
10 Kim, J. S., J. G. Kim, and W. J. Kim, 2004. Changes in isoflavone and oligosaccharides of soybeans during Germination. Korean J. Food Sci. Technol. 36(2) : 294-298
11 Kim, Y. H. and S. R. Kim. 1997. Isoflavone content in Korean soybean cultivars. Soonchunhyang J. Nat. Sci. 3(1) : 331-337.
12 Kim, Y. H., S. D. Kim, E. H. Hong, and W. S. Ahn. 1996. Physiological function of isoflavones and their genetic and environmental variations in soybean. Korean J. Crop Sci. 41(S) : 25-45.
13 Ko, J. M., W. Y. Han, H. T. Kim, Y. H. Lee, M. S. Choi, B. W. Lee, S. U. Shin, J. H. Seo, K. W. Oh, H. T. Yun, M. G. Jeon, K. H. Choi, J. H. Shin, E. J. Lee, S. Yang, and I. S. Oh. 2016. Soybean Cultivar for Soy-paste, 'Uram' with Mechanization Harvesting, Large Seed, Disease Resistance and High Yield. Korean J. Breed. Sci. 48(3) : 301-306.   DOI
14 Ko, K. P., Y. Yeo, J. H. Yoon, C. S. Kim, S. Tokudome, L. T. Ngoan, C. Koriyama, Y. K. Lim, S. H. Chang, H. R. Shin, D. Kang, S. K. Park, C. H Kang, and K. Y. Yoo. 2017. Plasma phytoestrogens concentration and risk of colorectal cancer in two different Asian populations. Clinical Nutrition http://dx.doi.org/10.1016/j.clnu.2017.07.014   DOI
15 Nielsen, I. L. and G. Williamson. 2007. Review of the factors affecting bioavailability of soy isoflavones in humans. Nutr. Cancer 57 : 1-10.   DOI
16 Lee, E. S., H. D. Kim, J. C. Chae, and Y. H. Kim. 2008. Variation of isoflavone and saponin during maturity in black soybean. Korean J. Crop Sci. 53(1) : 34-41.
17 Li, P., Q. Dong, S. Ge, X. He, J. Verdier, D. Li, and J. Zhao. 2016. Metabolic engineering of proanthocyanidin production by repressing the isoflavone pathways and redirecting anthocyanidin precursor flux in legume. Plant Biotech. J. 14 : 1604-1618.   DOI
18 Lin, L. Z., X. G. He, M. Lindenmaire, J. Yang, M. Cleary, S. X. Qiu, and G. A. Cordell. 2000. LC-ESI-MS study of the flavonoid glycoside malonates of red clover. J. Agric. Food Chem. 48 : 354-365.   DOI
19 Manach, C.,G. Williamson, C. Morand, A. Scalbert, and C. Remesy. 2005. Bioavailability and bioefficacy of polypenols in humans. Review of 97 bioavailability studies. Am. J. Clin. Nutr. 81 : 230S-242S.   DOI
20 Messina, M. 2014. Soy foods, isoflavones, and the health of postmenopausal women. Am. J. Clin. Nutr. 100 : 423S-430S   DOI
21 Record, I. R., I. E. Dreosti, and J. K. McInerney. 1995. The antioxidant activity of genistein in vitro. J. Nutr. Biochem. 6 : 481-485.   DOI
22 Tsukamoto, C., S. Shimada, K. Ijita, S. Kudou, M. Kokubun, K. Okubo, and K. Kitamura. 1995. Factors affecting isoflavone content in soybean seeds : Changs in isoflavones, saponins and composition of fatty acids at different temperatures during seed development. J. Agric. Food Chem. 43(5) : 1184-1192.   DOI
23 Rodriguez-Roque, M. J., M. A. Rojas-Grau, P. Elez-Martinez, O. Martin-Belloso. 2013. Soymilk phenolic compounds, isoflavones and antioxidant activity as affected by in vitro gastrointestinal digestion. Food Chem. 136 : 206-212.   DOI
24 Suh S. K., H. S. Kim, Y. J. Oh, K. H. Kim, S. K. Cho, Y. J. Kim, S. D. Kim, H. K. Park, M. S. Park, and S. Y. Cho. 1997. A new soybean variety for sprout with small seed and high yielding "Pungsan-namulkong". Korean J Breed 29 : 503.
25 Toebes, A. H. W., V. Boer, J. A. C. Verkleij, H. Lingeman, and W. H. O. Ernst. 2005. Extraction of isoflavone malonylglucosides from Trifolium pratense L. J. Agric. Food. Chem. 53 : 4660-4666.   DOI
26 Edwards, R., S. A. Tiller, and A. D. Parry. 1997. The effect of plant age and nodulation on the isoflavonoid content of red clover. Plant Physiol. 150:603-610.   DOI
27 Ahmad, M. Z., P. Li, J. Wang, N. U. Rehman, and J. Zhao. 2017. Isoflavone malonyltransferases GmlMaT1 and GmlMaT3 differently modify isoflavone glucosides in soybean under various stresses. Front. Plant Sci. 8 : 735. doi:10.3389/fpls.2017.00735   DOI
28 Chung, W. K. 1998. Physicochemical and sensory characteristics of soybean sprouts in relation to spybean cultivars and culture period. Ph.D thesis of Seoul Natl. Univ.
29 Coward, L., N. C. Barnes, K. D. R. Setchell, and S. Barnes. 1993. Genistein, Daidzein and their glucoside conjugates : Antitumor isoflavones in soybean foods from American and Asian diets. J. Agric. Food Chem. 31 : 394-396.
30 Dhayakaran, R. P. A., S. Neethirajans, J. Xue, and J. Shi. 2015. Characterization of antimicrobial efficacy of soy isoflavones against pathogenic biofilms. LWT food Sci. Technol. 63 : 859-865.   DOI
31 Franke, A. A., L. J. Custer, C. M. Cerna, and K. K. Narala. 1994. Quantitation of phytoestogens in legumes by HPLC. J. Agric. Food. Chem. 42 : 1905-1913.   DOI
32 Gutierrez-Gonzalez, J. J., S. K. Guttikonda, L. P. Tran, D. L. Aldrich, R. Zhong, O. Yu, H. T. Nguyen, and D. A. Sleper. 2010. Differential expression of isoflavone biosynthetic genes in soybean during water deficits. Plant and Cell Physiology. 51(6) : 936-948.   DOI
33 He, X. G., L. Z. Lin, and L. Z. Lian. 1996. Analysis of flavonoids from red clover by liquid chromatography-electrospray mass spectrometry. J. Chromatogr. A. 755 : 127-132.   DOI