Browse > Article
http://dx.doi.org/10.7740/kjcs.2018.63.2.106

Evaluation of the Fermentation Ability of Lactic Acid Bacteria to Manufacture Highest Quality Rice Straw Silage  

Lee, In-Sok (Division of Agro-food Development, Jeollabuk-do Agricultural Research & Extension Services)
Lee, Song-Yee (Division of Agro-food Development, Jeollabuk-do Agricultural Research & Extension Services)
Choi, Min-Kyung (Division of Agro-food Development, Jeollabuk-do Agricultural Research & Extension Services)
Kang, Chan-Ho (Division of Agro-food Development, Jeollabuk-do Agricultural Research & Extension Services)
Kim, Jeong-Man (Division of Agro-food Development, Jeollabuk-do Agricultural Research & Extension Services)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.63, no.2, 2018 , pp. 106-111 More about this Journal
Abstract
The main objective of this study was to determine the quality of rice straw silage made with various lactic acid bacteria (LAB) during fermentation. Five strains of LAB (Lactobacillus plantarum CMRT, L. leuconostoc mesenteroides M17, L. sakei C11, M5, SP2) were used in this study. With regard to odor, ready-made CMRT (a comparison strain) had the highest value from 10-60 days, followed by M17. The pH level of all silages made with five strains (apart from CMRT) ranged from 4.02 to 4.59. Of these, M17 rapidly lowered the pH value in the silage. Crude protein (CP) content was significantly lower (p < 0.01) in ready-made CMRT compared to the other bacteria. C11 fermentation produced the highest content of silage, with a score of 5.56. Acetic acid and butyric acid were not detected in any of the silage products. The lactic acid levels in silages produced by M17, M5, C11, and SP2 were comparatively higher than that produced by CMRT. The total digestible nutrient (TDN) content levels and relative fees value (RFV) were he highest in the silage of C11 (69.65 and 155.56, respectively), followed by M17. Based on odorl, pH, protein, organic acid, and feed value, we suggest tha the M17 strain is a suitable substitute for CMRT that can be used to generate high quality rice straw silage.
Keywords
lactic acid bacteria; relative feed value; rice straw; silage;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Gordon, F. 1989. An evaluation through lactating cattle of a bacterial inoculant as an additive for grass silage. Grass and Forage Science. 44 : 169-179.   DOI
2 Keady, T. W. J. and J. J. Murphy. 1996. Effects of inoculant treatment on ryegrass silage fermentation, digestibility, rumen fermentation, intake and performance of lactating dairy cattle. Grass and Forage Science. 51 : 232-241.   DOI
3 Kennedy, S. J., H. I. Gracey, E. F. Unsworth, R. W. J. Steen, and R. Anderson. 1989. Evaluation studies in the development of a commercial bacterial inoculant as an additive for grass silage. 2. Responses in finishing cattle. Grass and Forage Science. 44 : 371-380.   DOI
4 Kim, H. S. 1991. Studies on the viability of lactobacillus acidophilus IFO 3205 by microencapsulation. Ph.D. thesis. Seoul. Korea.
5 Kim, J. G. 1999. Effect of harvest maturity and management practices on quality of round baled rye silage. Seoul National University. Ph. D. Thesis.
6 Kim, J. K., J. S. Ham, E. S. Chung, H. S. Park, J. K. Lee, M. W. Jung, K. C.Choi, N. C. Jo, and S. Seo. 2009. Evaluation of fermentation ability of microbes for whole crop barly silage inoculant. Journal of the Korean Society of Grass and Forage Science. 29(3) : 235-244.   DOI
7 Kim, J. K., J. S.Ham, E. S.Chung, S. H. Yoon, M. J. Kim, H. S. Park, Y. C. Lim, and S. Seo. 2008. Evaluation of fermentation ability of microbes for whole crop rice silage inoculant. Journal of the Korean Society of Grass and Forage Science. 28(3) : 229-236.   DOI
8 Kim, J. G., H. S. Park, S. H. Lee, J. S. Jung, K. W. Lee, and H. J. Ko. 2015. Evaluation of productivity and silage quality for domestically developed forage crops in Korea. Journal of the Korean Society of Grassland and Forage Science. 35(2) : 145-151.   DOI
9 Korea Rural Economic Institute (KREI). 2015. 2015 KREI Research Report. KERI.
10 Lee, H. l., Y. J. Choi, L. Mamuad, E. J. Kim, Y. K. Oh, K. K. Park, and S. S. Lee. 2014. Effect of heterofermentative lactic acid bacteria on the quality of italian ryegrass and whole-crop barley silage. Journal of the Korean Society of Grass and Forage Science. 34(4) : 269-276.   DOI
11 Linn, J. G., P. M. Neal, W. T. Howard, and D. A. Rohweder. 1987. Relative feed value as a measure of forage quality. Minnesota Forage UPDATE. Vol XII, No 4. pp 2, 4, Minnesota Forage and Grassland Council.
12 Ogawa, M. 2003. Research of whole crop rice silage utilization in Japan. Animal Technology Research Laboratory. International Seminar Proceedings. 25-58.
13 Patterson, D. C., C. S. Mayne, F. J. Gordon, and D. J. Kilpatrick. 1997. An evaluation of an inoculant/enzyme preparation as an additive for grass silage for dairy cattle. Grass and Forage Science. 52 : 325-335.   DOI
14 Pitt, R. E. 1990. Silage and hay preservation. National, Agriculture and Engineering Service (NRAES). Cooperative Extension. Cornell University.
15 Weinberg, Z. G. and R. E. Muck. 1996. New trends and opportunities in the development and use of inoculants for silage. FEMS Microbiology Review. 19 : 53-68.
16 Choi, K. C., N. C. Jo, M. W. Jung, K. D. Lee, J. G. Kim, Y. C. Lim, W. H. Kim, Y. K. Oh, J. H. Choi, C. M. Kim, D. K. Jung, J. M. Choi, and H. G. Kim. 2011. Effect of harvest stage of corn on nutritive values and quality of roll baled corn silage manufactured with corn grown in paddy land. Journal of the Korean Society of Grassland and Forage Science. 31(1) : 65-74.   DOI
17 Wilkinson, J. M. and D. R. Davies. 2013. The aerobic stability of silage: key findings and recent developments. Grass Forage Science. 68 : 1-19.   DOI
18 Goering, H.K., and Van Soest, P.J. 1970. Forage fiber analysis. Agic. Handbook 379, U. S. Gov. Print. Office, Washington, D. C.
19 Ministry of Agriculture, Food and Rural Affairs (MAFRA). 2013. The current situation of forage increase production and supplementation policy. pp.2-5.
20 A. O. A. C. 1995. Official method of analysis (15th ed.). Association of Official Analytical Chemists, Arlington, VA. Washington D. C.
21 Duniere, L., J. Sindou, F. Chaucheyras-Durand, I. Chevallier, and D. Thevenot-Sergentet. 2013. Silage processing and strategies to prevent persistence of undesirable microorganisms. Animal Feed Science Technology. 182 : 1-15.   DOI