Browse > Article
http://dx.doi.org/10.7740/kjcs.2017.62.4.293

Changes in Mineral Uptake and Hormone Concentrations in Rice Plants Treated with Silicon, Nitrogen and Calcium Independently or in Combination  

Jang, Soo-Won (Natural Resources Research Institute, R&D Headquarters, Korea Ginseng Corporation)
Kim, Yoon-Ha (Division of Plant Biosciences, Kyungpook National University)
Na, Chae-In (Department of Agronomy, Gyeongsang National University)
Lee, In-Jung (Division of Plant Biosciences, Kyungpook National University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.62, no.4, 2017 , pp. 293-303 More about this Journal
Abstract
To elucidate the physiological responses of rice plants to the essential mineral silicon (Si), we assessed the effects of treatments with Si, nitrogen ($NH_4NO_3$; ammonium nitrate), and calcium ($CaCl_2$; calcium chloride), independently or in combination on mineral uptake rates and levels of the hormones abscisic acid (ABA), gibberellin ($GA_1$) and jasmonic acid (JA). We found that nitrogen and calcium uptake was inhibited by Si application. However, solo application of nitrogen or calcium did not affect Si uptake. Compared to the untreated plants, the application of Si, $NH_4NO_3$ or $CaCl_2$ increased the endogenous hormone levels in treated plants. In particular, the concentrations of $GA_1$ and JA increased significantly after the application of Si or $NH_4NO_3$. The level of $GA_1$ observed after a treatment (solo or combine) with Si, and $NH_4NO_3$ was higher than that of the control. By contrast, independent application of $CaCl_2$ or a combined treatment with Si and $CaCl_2$ did not alter $GA_1$ levels. The highest level of $GA_1$ was present in plants given a combination treatment of Si and $NH_4NO_3$. This effect was observed at all time points (6 h, 12 h and 24 h). Endogenous JA contents were higher in all treatments than the control. In particular, a combination treatment with Si and $NH_4NO_3$ significantly increased the JA levels in plants compared to other treatments at all time points. A small increase in JA levels was observed after 6 h in plants given the $CaCl_2$ treatment. However, JA levels did not differ between plants given a $CaCl_2$ treatment and controls after 12 h or 24 h of exposure. We conclude that treatment with $CaCl_2$ alone does not affect endogenous JA levels in the short term. Endogenous ABA contents did not show any differences among the various treatments.
Keywords
abscisic acid; essential element; gibberellin; jasmonic acid; silicon;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Epstein, E. 1999. Silicon. Annu. Rev. Plant Physiol. Plant Mol. Biol. 50 : 641-644.   DOI
2 Farmer, E. E. and C. A. Ryan. 1990. Interplant communication: airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. 87 : 7713-7716.   DOI
3 Hedden, P. and S. G. Thomas. 2012. Gibberellin biosynthesis and its regulation. Biochem. J. 444 : 11-25.   DOI
4 Herde, O. H., L. Willmitzer, and J. Fisahn. 1997. Stomatal responses to jasmonic acid, linolenic acid and abscisic acid in wild-type and ABA-deficient tomato plants. Plant Cell Environ. 20 : 136-141.   DOI
5 Hwang, S. J., M. Hamayun, H. Y. Kim, C. I. Na, K. U. Kim, D. H. Shin, S. Y. Kim, and I. J. Lee. 2007. Effect of nitrogen and silicon nutrition on bioactive gibberellin and growth of rice under field conditions. J. Crop Sci. Biotech. 10 : 281-286.
6 Jang, S. W., M. Hamayun, E. Y. Sohn, D. H. Shin, K. U. Kim, and I. J. Lee. 2007. Studies on the effect of silicon nutrition on plant growth, mineral contents and endogenous gibberellins of three rice cultivars. J. Crop Sci. Biotech. 10 : 47-51.
7 Jang, S. W., M. Hamayun, E. Y. Sohn, D. H. Shin, K. U. Kim, B. H. Lee, and I. J. Lee. 2008. Effect of elevated nitrogen levels on endogenous gibberellin and jasmonic acid contents of three rice (Oryza sativa L.) cultivars. J Plant Nutr. Soil Sci. 171 : 181-186.   DOI
8 Jawahar, S. and V. Vaiyapuri. 2013. Effect of sulphur and silicon fertilization on yield, nutrient uptake and economics of rice. Int. Res. J. Chem. 1 : 34-43.
9 Kang, Y. S., J. G. Lee, J. I. Kim, and J. S. Lee. 1997. Influence of silicate application on rice quality. Kor. J. Crop Sci. 42 : 800-804.
10 Kamboj, J. S., G. Browning, P. S. Blake, J. D. Quinlan, and D. A. Baker. 1999. GC-MS-SIM analysis of abscisic acid and indole-3-acetic acid in shoot bark of apple rootstocks. Plant Growth Regul. 28 : 21-27.   DOI
11 Kim, C. B., N. K. Park, S. D. Park, D. U. Choi, S. G. Son, and J. Choi. 1986. Changes in rice yield and soil physicochemical properties as affected by annual application of silicate fertilizer to paddy soil. Kor. J. Soc. Soil Sci. Fert. 19 : 123-132.
12 Kim, Y. H., A. L Khan, M. Hamayun, S. M. Kang, Y. J. Beom, and I. J. Lee. 2011. Influence of short-term silicon application on endogenous physiohormonal levels of Oryza sativa L. under wounding stress. Biol. Trace Elem. Res. 144 : 1175-1185.   DOI
13 Kim, Y. H., A. L. Khan, D. H. Kim, S. Y. Lee, K. M. Kim, M. Waqas, H. Y. Jung, J. H. Shin, J. G. Kim, and I. J. Lee. 2014a. Silicon mitigates heavy metal stress by regulating P-type heavy metal ATPases, Oryza sativa low silicon genes, and endogenous phytohormones. BMC Plant Boil. 14 : 13.   DOI
14 Kim, Y. H., A. L. Khan, M. Waqas, H. J. Jeong, D. H. Kim, J. S. Shin, J. G. Kim, M. H. Yeon, and I. J. Lee. 2014b. Regulation of jasmonic acid biosynthesis by silicon application during physical injury to Oryza sativa L. J. Plant Res. 127 : 525-532.   DOI
15 Kim, Y. H., A. L. Khan, M. Waqas, J. K. Shim, D. H. Kim, K. Y. Lee, and I. J. Lee. 2014c. Silicon application to rice root zone influenced the phytohormonal and antioxidant responses under salinity stress. J. Plant Growth Regul. 33 : 137-149.   DOI
16 Kim, Y. H., A. L. Khan, and I. J. Lee. 2015. Silicon: a duo synergy for regulating crop growth and hormonal signaling under abiotic stress conditions, Crit. Rev. Biotechnol. DOI: 10.3109/07388551.2015.1084265.   DOI
17 Ma, J. and E. Takahashi. 1989. Effect of silicic acid on phosphorus uptake by rice plant. Soil Sci. Plant Nut. 35 : 227-234.   DOI
18 Lee, I. J., K. R. Foster, and P. W. Morgan. 1998. Photoperiod control of gibberellin levels and flowering in Sorghum. Plant Physiol. 116 : 1003-1011.   DOI
19 Lee, S. K., E. Y. Sohn, M. Hamayun, J. Y. Yoon, and I. J. Lee. 2010. Effect of silicon on growth and salinity stress of soybean plant grown under hydroponic system. Agroforest. Syst. 80 : 333-340.   DOI
20 Liang, Y. 1999. Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209 : 217-224.   DOI
21 Ma, J. F., N. Yamaji, N. Mitani, K. Tamai, S. Konishi, T. Fujiwara, M. Katsuhara, and M. Yano. 2007. An efflux transporter of silicon in rice. Nature 448 : 209-212.   DOI
22 Mae, T. 1997. Physiological nitrogen efficiency in rice: Nitrogen utilization, photosynthesis, and yield potential. Plant and Soil 196 : 201-210.   DOI
23 Mihlan, M., V. Homann, T. W. D. Liu, and B. Tudzynski. 2003. AREA directly mediates nitrogen regulation of gibberellin biosynthesis in Gibberella fujikuroi, but its activity is not affected by NMR. Mol. Microbiol. 47 : 975-991.   DOI
24 Mueller, M. J. and W. Brodschelm. 1994. Quantification of jasmonic acid by capillary gas chromatography-negative chemical ionization-mass spectrometry. Anal. Biochem. 218 : 425-435.   DOI
25 Qi, Q. G., P. A. Rose, G. D. Abrams, D. C. Taylor, S. R. Abrams, and A. J. Cutler. 1998. (+)-Abscisic acid metabolism, 3-ketoacyl-coenzyme A synthase gene expression, and very-long-chain monounsaturated fatty acid biosynthesis in Brassica napus embryos. Plant Physiol. 117 : 979-987.   DOI
26 Neumann, D. and U. Nieden. 2001. Silicon and heavy metal tolerance of high plants. Phytochem. 56 : 685-692.   DOI
27 Nishimura, K., Y. Miyaki, and E. Takahashi. 1989. On silicon, aluminium, and zinc accumulators discriminated from 147 species of Angiospermae. Mem. Coll. Agric. Kyoto Univ. 133 : 23-43.
28 Arigoni, D., S. Sagner, C. Latzel, W. Eisenreich, A. Bacher, and M. H. Zenk. 1997. Terpenoid biosynthesis from 1-deoxy-D-xylulose in higher plants by intramolecular skeletal rearrangement. Proc. Natl. Acad. Sci. USA 94 : 10600-10605.   DOI
29 Baldwin, I. T., E. A. Schmelz, and T. E. Ohnmeiss. 1994. Wound-induced changes in root and shoot jasmonic acid pools correlate with induced nicotine synthesis in Nicotiana sylvestris. J. Chem. Ecol. 20 : 2139-2157.   DOI
30 Blázquez, M. A., R. Green, O. Nilsson, M. R. Sussman, and D. Weigel. 1998. Gibberellins promote flowering of arabidopsis by activating the LEAFY promoter. The Plant Cell 10 : 791-800.   DOI
31 Reddy, A. R., K. V. Chaitanya, and M. Vivekanandan. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161 : 1189-1202.   DOI
32 Schjoerring, J. K., S. Husted, G. Mäck, and M. Mattsson. 2002. The regulation of ammonium translocation in plants. J. Exp. Bot. 53(370) : 883-890.   DOI
33 Schmelz, E. A., H. T. Alborn, J. Engelberth, and J. H. Tumlinson. 2003. Nitrogen deficiency increases volicitin-induced volatile emission, jasmonic acid accumulation, and ethylene sensitivity in maize. Plant Physiol. 133 : 295-306.   DOI
34 Shaul, O. 2002. Magnesium transport and function in plants: the tip of the iceberg. Biometals 15 : 307-321.   DOI
35 White, P. J. and M. R. Broadley. 2003. Calcium in plants. Ann. Bot. 92 : 487-511.   DOI
36 Bremond, L., A. Alexandre, C. Hély, and J. Guiot. 2005. A phytolith index as a proxy of tree cover density in tropical areas: calibration with Leaf Area Index along a forest-savanna transect in southeastern Cameroon. Global Planet. Change 45 : 277-293.   DOI
37 Browning, G. and T. A. Wignall. 1987. Identification and quantification of indole-3-acetic and abscisic acids in the cambial region of Quercus robur by combined gas chromatography-mass spectrometry. Plant Physiol. 3 : 235-246.
38 Cakmak, I. and H. Marschner. 1992. Magnesium deficiency and high light intensity enhance activities of superoxide dismutase, ascorbate peroxidase, and glutathione reductase in bean leaves. Plant Physiol. 98 : 1222-1227.   DOI
39 Takahashi, K., K. Fujino, Y. Kikuta, and Y. Koda. 1994. Expansion of potato cells in response to jasmonic acid. Plant Sci. 100 : 3-8.   DOI
40 Ueda, J., K. Miyamoto, and M. Aoki. 1995. Jasmonic acid inhibits the IAA-induced elongation of oat coleptile segment : A possible mechanism involving the mechanism of cell wall polysaccharides. Plant Cell Physiol. 35 : 357-359.
41 Xi, J., Y. Qiu, L. Du, and B. W. Poovaiah. 2012. Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses. Plant Sci. 185 : 274-280.
42 Yamaguchi, S. 2008. Gibberellin metabolism and its regulation. Annu. Rev. Plant Biol. 59 : 225-251.   DOI
43 Cooke, J. and M. R. Leishman. 2011. Is plant ecology more siliceous than we realise. Trends Plant Sci. 16 : 61-68.
44 Carver, T. L. W., R. J. Zeyen, and G. G. Ahlstrand. 1987. The relation between insoluble silicon and success of failure of attempted penetration by powdery mildew (Erysiphe graminis) germlings on barley. Physiol. Mol. Plant Pathol. 31 : 133-148.   DOI
45 Cha-um, S., H. P. Singh, T. Samphumphuang, and C. Kirdmanee. 2012. Calcium-alleviated salt tolerance in indica rice ('Oryza sativa' L. spp. 'indica'): Physiological and morphological changes. Aust. J. Crop Sci. 6 : 176-182.
46 Chen, W., X. Yao, K. Cai, and J. Chen. 2011. Silicon alleviates drought stress of rice plants by improving plant water status, photosynthesis and mineral nutrient absorption. Biol. Trace Elem. Res. 142 : 67-76.   DOI
47 Yamaji, N., Y. Chiba, N. Mitani-Ueno, and J. F. Ma. 2012. Functional characterization of a silicon transporter gene implicated in silicon distribution in barley. Plant Physiol. 160(3) : 1491-1497.   DOI
48 Yoshida, S., Y. Ohnishi, and K. Kitagishi. 1959. Role of siucon in rice nutrition. Soil Sci. Plant Nut. 5(3) : 127-133.   DOI
49 Cho, Y. S., W. T. Jeon, C. Y. Park, K. D. Park, and U. G. Kang. 2006. Study of nutrient uptake and physiological characteristics of rice by 15N and purified Si fertilization level in a transplanted pot experiment. Korean J. Crop Sci. 51 : 408-419.
50 Choudhury, T. M. A. and Y. M. Khanif. 2001. Evaluation of effects of nitrogen and magnesium fertilization on rice yield and fertilizer nitrogen efficiency using 15N tracer technique. J. Plant Nut. 24 : 855-871.   DOI
51 Deshmukh, R. K., J. Vivancos, G. Ramakrishnan, V. Guérin, G. Carpentier, H. Sonah, C. Labbé, P. Isenring, F. J. Belzile, and R. R. Bélanger. 2015. A precise spacing between the NPA domains of aquaporins is essential for silicon permeability in plants. Plant J. 83 : 489-500.   DOI
52 Ding, Y., W. Luo, and G. Xu. 2006. Characterisation of magnesium nutrition and interaction of magnesium and potassium in rice. Ann. Applied Biol. 149 : 111-123.   DOI
53 Eckardt, N. A. 2002. Abscisic acid biosynthesis gene underscores the complexity of sugar, stress, and hormone interactions. Plant Cell 14 : 2645-2649.   DOI