Browse > Article
http://dx.doi.org/10.7740/kjcs.2016.62.1.024

Evaluation of Drought Tolerance using Anthesis-silking Interval in Maize  

Kim, Hyo Chul (Department of Life Science, Dongguk University-Seoul)
Moon, Jun-Cheol (Agriculture and Life Sciences Research Institute, Kangwon National University)
Kim, Jae Yoon (Department of Plant Resources, Kongju National University)
Song, Kitae (Department of Life Science, Dongguk University-Seoul)
Kim, Kyung-Hee (Department of Life Science, Dongguk University-Seoul)
Lee, Byung-Moo (Department of Life Science, Dongguk University-Seoul)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.62, no.1, 2017 , pp. 24-31 More about this Journal
Abstract
We screened the drought tolerant maize using seventeen maize genotypes from different sources, nine inbred genotypes from United States Department of Agriculture (USDA) (B73, CML103, CML228, CML277, CML322, CML69, Ki3, Ki11, and NC350), three Southeast Asian genotypes (DK9955, LVN-4, and 333), and five Korean hybrids (Cheongdaok, Gangdaok, Ilmichal, Kwangpyeongok, and Pyeonganok). We evaluated anthesis-silking interval (ASI), leaf senescence (LS), ears per plant (EPP), tassel length (TL), and fresh weight (FW) at silking date. According to ASI and LS examination, CML103 and Kill were drought tolerant genotypes, wheareas Ki3 and 333 were drought susceptible. EPP, TL, and FW differed according to drought resistance. Grain yield was correlated strongly with ASI, but moderately with LS. Difference in ASI between drought-stressed (DS) and well-watered (WW) conditions was less than three days in CML228, CML103, Cheongdaok, NC350, B73, Ki11, CML322, and Kwangpyeongok, whereas that of Ki3, Pyeonganok, and Gangdaok was more than 6.5 days. We concluded that CML228, CML103, Cheongdaok, NC350, B73, Ki11, CML322, and Kwangpyeongok are drought tolerant genotypes, whereas Ki3, Pyeonganok, and Gangdaok are drought susceptible.
Keywords
ASI; drought susceptible genotype; drought stress; drought tolerant genotype; maize;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Erdal, S., M. Pamukcu, A. Ozturk, K. Aydinsakir, and S. Soylu. 2015. Combining abilities of grain yield and yield related traits in relation to drought tolerance in temperate maize breeding. Turk J. Field Crops 20(2) : 203-212.
2 Farooq, M., A. Wahid, S. A. Cheema, D. J. Lee, and T. Aziz. 2002. Drought stress: Comparative time course action of foliar applied glycinebetaine, salicylic acid, nitrous oxide, brassinosteroids and spermine in improving drought resistance of rice. J. Agronomy and Crop Sci. 196(5) : 336-345.   DOI
3 Farooq, M., A. Wahid, N. Kobayashi, D. Fujita, and S. M. A. Basra. 2009. Plant drought stress: effects, mechanisms and management. Agron. Sustain. Dev. 29(1) : 185-212.   DOI
4 Fischer, K. S., G. O. Edmeades, and E. C. Johnson. 1989. Selection for the improvement of maize yield under moisture-deficits. Field Crops Research, 22(3) : 227-243.   DOI
5 Fuad-Hassan, A., F. Tardieu, and O. Turc. 2008. Drought-induced changes in anthesis-silking interval are related to silk expansion: a spatio-temporal growth analysis in maize plants subjected to soil water deficit. Plant, Cell and Environ. 31 : 1349-1360.   DOI
6 Grant, R. F., B. S. Jackson, J. R. Kiniry, and G. F. Arkin. 1989. Water deficit timing effects on yield components in maize. Agronomy J. 81(1) : 61-65.   DOI
7 Gonzalo, M., T. J. Vyn, J. B. Holland, and L. M. McIntyre. 2006. Mapping density response in maize: A direct approach for testing genotype and treatment interactions. Gent. 173(1) : 331-348.
8 Hall, A. J., J. H. Lemcoff, and N. Trapani. 1981. Water stress before and during flowering in maize and its effects on yield, its components, and their determinants. Maydica 26 : 19-38.
9 Harder, H. J., R. E. Carlson, and R. H. Shaw. 1982. Yield, yield components, and nutrient content of corn grains as influenced by post-silking moisture stress. Agronomy J. 74(2) : 275-278.   DOI
10 Herrero, M. P., and R. R. Johnson. 1981. Drought stress and its effects on maize reproductive systems. Crop Sci. 21(1) : 105-110.   DOI
11 Lu, Y., Z. Hao, C. Xie, J. Crossa, J. L. Arus, S. Gao, B. S. Vivek, C. Magorokosho, S. Mugo, D. Makumbi, S. Taba, G. Pan, X. Li, T. Rong, S. Zhang, and Y. Xu. 2011. Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crops Res. 124(1) : 37-45.   DOI
12 Hunter, R. B., T. B. Daynard, D. J. Hume, J. W. Tanner, J. D. Curtis, and L. W. Kannenberg. 1969. Effect of tassel removal on grain yield of corn (Zea mays L.). Crop Sci. 9(4) : 405-406.   DOI
13 Khan, M. A., S. Akbar, S. Akbar, K. Ahmad, and M. S. Baloch. 1999. Evaluation of corn hybrids for grain yield in D.I. Khan. Pakistan Journal of Biological Sciences 2(2) : 413-414.   DOI
14 Lawlor, D. W., and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environ. 25(2) : 275-294.   DOI
15 Masclaux-Daubresse, C., F. Daniel-Vedele, J. Dechorgnat, F. Chardon, L. Gaufichon, and A. Suzuki. 2010. Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Annals of botany 105(7) : 1141-1157.   DOI
16 Morgan, J. M. 1980. Possible role of abscisic acid in reducing seed set in water stressed wheat plants. Nature 285 : 655-657.   DOI
17 Moss, G. I., and L. A. Downey. 1971. Influence of drought stress on female gametophyte development in corn (Zea mays L.) and subsequent grain yield. Crop Sci. 11(3) : 368-372.   DOI
18 Nogues, S., and N. R. Baker. 2000. Effects of drought on photosynthesis in mediterranean plants grown under enhanced UV-B. J. Exp. Bot. 51(348) : 1309-1317.   DOI
19 Angus, J. F., and M. W. Moncur. 1977. Water stress and phenology in wheat. Aust. J. Agric Res. 28(2) : 177-181.   DOI
20 Andersen, M. N., F. Asch, Y. Wu, C. R. Jensen, H. Naested, V. O. Mogensen, and K. E. Koch. 2002. Soluble invertase expression is an early target of drought stress during the critical, abortion sensitive phase of young ovary development in maize. Plant Physiol. 130 : 591-604.   DOI
21 Araus, J. L., G. A. Slafer, C. Royo, and M. D. Serret. 2008. Breeding for yield potential and stress adaptation in cereals. Critical Reviews in Plant Sciences 27(6) : 377-412.   DOI
22 Ashraf, M. 1989. Effect of water stress on maize cultivars during the vegetative stage. Ann. Arid Zone 28 : 47-55.
23 Athar, H., and M. Ashraf. 2005. Photosynthesis under drought stress. In: Pessarakli, M. (ed.): Photosynthesis. 2nd ed. CRC press. pp. 793-804.
24 Banzinger, M., G. O. Edmeades, D. L. Beck, and M. Bellon. 2000. Breeding for drought and N stress tolerance in maize: from theory to practice. CIMMYT, Mexico, D. F.
25 Bassetti, P., and M. E. Westgate. 1993a. Senescence and receptivity of maize silks. Crop Sci. 33 : 275-278.   DOI
26 Bassetti, P., and M. E. Westgate. 1993b. Water deficit affects receptivity of maize silks. Crop Sci. 33 : 279-282.   DOI
27 Bolanos, J., and G. O. Edmeades. 1993. Eight cycle of selection for drought tolerance in lowland tropical maize. II. Responses in reproductive behavior. Field Crops Res. 31 : 269-289.   DOI
28 Bawa, A., I. K. Addai, and J. X. Kugbe. 2015. Evaluation of some genotypes of maize (Zea mays L.) for tolerance to drought in Northern Ghana. Plant Biol. 5(6) : 19-29.
29 Beck, D., F. J. Betran, M. Banziger, M. Willcox, and G. O. Edmeades. 1996. From landrace to hybrid: strategies for the use of source populations and lines in the development of drought-tolerant cultivars. In Edmeades G. O., M. Banziger, H. R. Mickelson, and C. B. Pena-Valdivia. (ed.) Developing drought and low N tolerant maize. Proceedings of a Symposium. El Batan. 25-29 March 1996. CIMMYT, El Batan, Mexico.
30 Beck, E. H., S. Fettig, C. Knake, K. Hartig, and T. Bhattarai. 2007. Specific and unspecific responses of plants to cold and drought stress. J. Biosci. 32(3) : 501-510.   DOI
31 Bolanos, J., and G. O. Edmeades. 1996. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res. 48(1) : 65-80.   DOI
32 Bruce, W. B., G. O. Edmeades, and T. C. Barker. 2002. Molecular and physiological approaches to maize improvement for drought tolerance. J. Exp. Bot. 53 : 13-25.   DOI
33 Buckler, E. S., J. B. Holland, P. J. Bradbury, C. Acharya, and P. J. Brown, C. Browne, E. Ersoz, S. F. Garcia, A. Garcia, J. C. Glaubitz, M. M. Goodman, C. Harjes, K. Guill, D. E. Kroon, S. Larsson, N. K. Lepak, H. Li, S. E. Mitchell, G. Pressoir, J. A. Peiffer, M. O. Rosas, T. R. Rocheford, M. C. Romay, S. Romero, S. Salvo, H. S. Villeda, H. S. D. Silva, Q. Sun, F. Tian, N. Upadyayula, D. Ware, H. Yates, J. Yu, Z. Zhang, S. Kresovich, and M. D. McMullen. 2009. The genetic architecture of maize flowering time. Science 325 : 714-718.   DOI
34 Robins, J. S., and C. E. Domingo. 1953. Some effects of severe soil moisture deficits at specific growth stages in corn. Agronomy J. 45 : 618-621.   DOI
35 Prasanna, B. M., K. Pixley, M. L. Waburton, and C. X. Xie. 2010. Molecular marker-assisted breeding options for maize improvement in Asia. Mol. Breeding 26(2) : 339-356.   DOI
36 Quarrie, S. A., and H. G. Jones. 1977. Effects of abscisic acid and water stress on development and morphology of wheat. J. Exp. Bot. 28(1) : 192-203.   DOI
37 Ribaut, J. M., C. Jiang, D. Gonzalez-de-Leon, G. O. Edmeades, and D. A. Hoisington. 1997. Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and marker-assisted selection strategies. Theor. Appl. Genet. 94 : 887-896.   DOI
38 Rowland, J. R. J. 1993. Cereal Crops. In : Rowland, J. R. J. (eds). Dry land farming in Africa, Macmillan Education Ltd., London and Basingstoke. Published in co-operation with the CTA (Technical Centre for Agricultural and Rural Co-operation), pp. 218-236.
39 Sari-Gorla, M., P. Krajewski, N. D. Fonzo, M. Villa, and C. Frova. 1999. Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering. Theor. Appl. Genet. 99(1) : 289-295.   DOI
40 Schussler, J. R., and M. E. Westgate. 1991a. Maize kernel set at low water potential: I. Sensitivity to reduced assimilates during early kernel growth. Crop Sci. 31(5) : 1189-1195.   DOI
41 Schussler, J. R., and M. E. Westgate. 1991b. Maize kernel set at low water potential: II. Sensitivity to reduced assimilates at pollination. Crop Sci. 31(5) : 1196-1203.   DOI
42 Edmeades, G. O., J. Bolanos, M. Hernandez, and S. Bello. 1993. Causes for silk delay in a lowland tropical maize population. Crop Sci. 33(5) : 1029-1035.   DOI
43 Setter, T. L., B. A. Flannigan, and J. Melkonian. 2001. Loss of kernel set due to water deficit and shade in maize. Crop Sci. 41(5) : 1530-1540.   DOI
44 Byrne, P. F., J. Bolanos, G. O. Edmeades, and D. L. Eaton. 1995. Gains from selection under drought versus multilocation 212 testing in related tropical maize populations. Crop Sci. 35 : 63-69.   DOI
45 Chapman, S. C., and G. O. Edmeades. 1999. Selection improves drought tolerance in tropical maize populations: II Direct and correlated responses among secondary traits. Crop Sci. 39 : 1315-1324.   DOI
46 Cooper, M., C. Gho, R. Leafgren, T. Tang, and C. Messina. 2014. Breeding drought-tolerant maize hybrids for the US corn-belt: discovery to product. J. Exp. Bot. 65(21) : 6191-6204.   DOI
47 Earl, H. J., and R. F. Davis, 2003. Effect of drought stress on leaf and whole canopy radiation use efficiency and yield of maize. Agron. J. 95(3) : 688-696.   DOI
48 Edmeades, G. O., J. Bolanos, A. Elings, J. M. Ribaut, M. Banziger, and M. E. Westgate. 2000. The role and regulation of the anthesis-silking interval in maize. In: Westgate, M. E., and K. J. Boote. (eds). Physiology and Modeling Kernel Set in Maize. CSSA, Madison, WI, CSSA Special Publication No. 29. pp. 43-73.
49 Edmeades, G.O., J. Bolanos, and H. R. Lafitte. 1992. Progress in breeding for drought tolerance in maize. In : Wilkinson, D. (eds). Proceedings of the 47th Annual Corn and Sorghum International Research Conference, ASTA, Washington, pp. 93-111.
50 Edmeades, G. O., J. Bolanos, S. C. Chapman, H. R. Lafitte, and M. Banziger. 1999. Selection improves drought tolerance in tropical maize populations: I. Gains in biomass, grain yield, and harvest index. Crop Sci. 39(5) : 1306-1315.   DOI
51 Westgate, M. E., and J. S. Boyer. 1985. Carbohydrate re-serves and reproductive development at low leaf water potentials in maize. Crop Sci. 25(5) : 762-769.   DOI
52 Shin, S. H., J. S. Lee, S. G. Kim, T. H. Go, J. Y. Shon, S. G. Kang, J. S. Lee, H. H. Bae, J. T. Kim, K. B. Shim, W. H. Yang, and M. O. Woo. 2015. Yield of maize (Zea mays L.) logistically declined with increasing length of the consecutive visible wilting days during flowering. J. Crop Sci. Biotech. 18(4) : 237-248   DOI
53 Smith, C. W., J. Betran, and E. C. A. Runge. 2004. Corn: origin, history, technology, and production. Wiley series in crop science. pp. 358-360.
54 Udomprasert, N., J. Kijjanon., K. C. Iam, and A. Machuay. 2005. Effects of water deficit at tasseling on photosynthesis, development, and Yield of corn. Kastsart J. (Nat. Sci.) 39 : 546-551.
55 Ziyomo, C., and R. Bernardo. 2012. Drought tolerance in maize: indirect selection through secondary traits versus genome wide selection. Crop Sci. 53(4) : 1269-1275.   DOI