Browse > Article
http://dx.doi.org/10.7740/kjcs.2015.60.4.401

Research Status for Drought Tolerance in Maize  

Kim, Kyung-Hee (Department of Life Science, Dongguk University-Seoul)
Moon, Jun-Cheol (Agriculture and Life Sciences Research Institute, Kangwon National University)
Kim, Jae-Yoon (College of Life Science and Biotechnology, Korea University)
Kim, Hyo-Chul (Department of Life Science, Dongguk University-Seoul)
Shin, Seung-Ho (Department of Life Science, Dongguk University-Seoul)
Song, Ki-Tae (Department of Life Science, Dongguk University-Seoul)
Lee, Byung-Moo (Department of Life Science, Dongguk University-Seoul)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.60, no.4, 2015 , pp. 401-411 More about this Journal
Abstract
Drought stress has detrimental effects on the seedling development, vegetative/ reproductive growth, photosynthesis, root proliferation, anthesis, anthesis-silking interval (ASI), pollination and grain yield in maize. Typically, two weeks before silking through pollination are an important time in maize life. Here we reviewed the effects of drought stress on growth, physiological/ molecular researches for drought tolerance, and breeding to genomics in maize. Drought stress during kernel development increases leaf dying and lodging, decreases grain filling period and grain yield. Physiological factors of drought stress/ effects are water content, water deficits, and water potential. Nowdays molecular marker assisted breeding method is becoming increasingly useful in the improvement of new germplasm with drought stress tolerance.
Keywords
maize; drought tolerance; drought stress; anthesis-silking interval (ASI); molecular marker;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Abrecht, D. G. and P. S. Carberry. 1993. The influence of water deficit prior to tassel initiation on maize growth, development and yield. Field Crops Res. 31 : 55-59.   DOI
2 Agrama, H. A. S. and M. E. Moussa. 1996. Mapping QTLs in breeding for drought tolerance in maize (Zea mays L.). Euphytica. 91 : 89-97.   DOI
3 Almeida, G. D., D. Makumbi, C. Magorokosho, S. Nair, A. Borem, J. Ribaut, M. Banziger, B. M. Prasanna, J. Crossa, and R. Rabu. 2013. QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. Theor. Appl. Genet. 126 : 583-600.   DOI
4 Aslam, M., I. A. Khan, M. Saleem, and Z. Ali. 2006. Assessment of water stress tolerance in different maize accessions at germination and early growth stage. Pak. J. Bot. 38(5) : 1571-1579.
5 Aslam, M., M. S. I. Zamir, I. Afzal, M. Yaseen, M. Mubeen, and A. Shoaib. 2013. Drought stress, its effect on maize production and development of drought tolerance through potassium application. Cercetari Agronomic in Moldova. Vol. XLVI, No.2 (154) : 99-114.
6 Banziger, M., G. O. Edmeades, D. Beck, and M. Bellon. 2000. Breeding for drought and nitrogen stress tolerance in maize. From theory to practice. CIMMYT, Mexico, pp. 39-42.
7 Barnaby, J. Y., M. Kim, G. Bauchan, J. Bubce, V. Reddy, and R. C. Sicher. 2013. Drought responses of foliar metabolites in three maize hybrids differing in water stress tolerance. PLos ONE 8(10) : e77145.   DOI
8 Bernardo, R. 2008. Molecular markers and selection for complex traits in plants: Learning from the last 20 years. Crop Sci. 48 : 1649-1664.   DOI
9 Bernardo, R. and J. Yu. 2007. Prospects for genomewide selection for quantitative traits in maize. Crop Sci. 47 : 1082-1090.   DOI
10 Blum, A. 1988. Improving wheat grain filling under stress by stem reserve mobilization. Euphytica 100 : 77-83.
11 Bolanos, J. and G. O. Edmeades. 1993. Eight cycles of selection for drought tolerance in lowland tropical maize. 1. Responses in grain-yield, biomass, and radiation utilization. Field Crops Res. 31 : 233-252.   DOI
12 Bolanos, J. and G. O. Edmeades. 1996. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res. 48(1) : 65-80.   DOI
13 Botstein, D., R. L. White, M. Skolnick, and R. W. Davis. 1980. Construction of genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32 : 314-331.
14 Cattivelli, L., P. Baldi, C. Crosatti, N. Di Fonzo, P. Faccioli, m. Grossi, A. M. Mastrangelo, N. Pecchioni, and A. M. Stance. 2002. Chromosome regions and stress-related sequences involved in resistance to abiotic stress in Triticeae. Plant Mol. Biol. 48 : 649-665.   DOI
15 Boyer, J. S. and M. E. Westgate. 2004. Grain yields with limited water. J. Exp. Bot. 55 : 2385-2394.   DOI
16 Burton, A. L., J. M. Jahnson, J. M. Foerster, C. N. Hirsch, C. R. Buell, M. T. Hanlon, S. M. Kaeppler, K. M. Brown, and J. P. Lynch. 2014. QTL mapping and phenotypic variation for root architectural traits in maize (Zea mays L.). Theor. Appl. Genet. 127 : 2293-2311.   DOI
17 Cakir, R. 2004. Effect of water at different development stages on vegetative and reproductive growth of corn. Field Crops Research. 89 : 1-16.   DOI
18 Cattivelli, L., F. Rizza, F.-W. Badeck, E. Mazzucotelli, A. M. Mastrangelo, E. Francia, C. Mare, A. Tondelli, and A. M. Stanca. 2008. Drought tolerance improvement in crop plants:An integrated view from breeding to genomics. Field Crops Research. 105 : 1-14.   DOI
19 Chen, J., W. Xu, J. J. Burke, and Z. Xin. 2010. Role of phosphatidic acid in high temperature tolerance in maize. Crop. Sci. 50 : 2506-2515.   DOI
20 Chen, M.-H., P. Kaur, B. Dien, F. Below, M. L. Vincent, and V. Singh. 2013. Use of tropical maize for bioethanol production. World J Microbiol Biotehnol. 29(8) : 1509-1515.   DOI
21 Chugh, V., N. Kaur, and A. K. Gupta. 2011. Evaluation of oxidative stress tolerance in maize (Zea maize L.) seedling response to drought. Indian J. Biochem. Biophys. 48 : 47-53.
22 Cushman, J. C. 2001. Crasulacean acid metabolism. A plastic photosynthetic adaptation to arid environments. Plant Physiol. 127 : 1439-1448.   DOI
23 Gulli, M., E. Salvatori, L. Fusaro, C. Pellacani, F. Manes, and N. Marmiroli. 2015. Comparison of drought stress response and gene expression between a GM maize variety and a Near-Isogenic Non-GM variety. Plos ONE 10(2) : e0117073.   DOI
24 Eathington, S. R., T. M. Crosbie, M. D. Edwards, R. S. Reiter, and J. K. Bull. 2007. Molecular markers in a commercial breeding program. Crop Sci. 47(S3) : S154-S163.
25 Edmeades, G. O., J. Bolanos, A. Elings, J.-M. Ribaut, M. Banziger, and M. E. Westgate. 2000. The role and regulation of the anthesis-silking interval in maize. In: Westgate, M. E., K. J. Boote (Eds.), Physiology and modelling kernel set in maize. CSSA special publication No. 29. CSSA, Madison, WI, pp. 43-73.
26 Gemenet, D. C., F. N. Wachira, R. S. Pathak, and S. W. Munyiri. 2010. Identification of molecular markers linked to drought tolerance using bulked segregant analysis in Kenyan maize (Zea mays L.) landraces. J. Anim. Plant Sci. 9(1) : 1122-1134.
27 Hao, Z. F., X. H. Li, C. X. Xie, M. S. Li, D. G. Zhang, L. Bai, and S. H. Zhang. 2008. Two consensus quantitative trait loci clusters controlling anthesis-silking interval, ear setting and grain yield might be related with drought tolerance in maize. Ann. Appl. Biol. 153 : 73-83.   DOI
28 Hao, Z., X. Liu, X. Li, C. Xie, M. Li, D. Zhang, S. Zhang, and Y. Xu. 2009. Identification of quantitative trait loci for drought tolerance at seedling stage by screening a large number of introgression lines in maize. Plant Breeeding. 128 : 337-341.   DOI
29 Hao, Z., X. Li, X. Liu, C. Xie, M. Li, D. Zhang, and S. Zhang. 2010. Meta-analysis of constitutive and adaptive QTL for drought tolerance in maize. Euphytica. 174 : 165-177.   DOI
30 Heiniger, R. W. 2000. Irrigation and drought management. Crop Science Department. Available from: http://www.ces.ncsu.edu/ plymouth/cropsci/cornguide/Chapter4.html
31 Helentjaris, T., G. King, M. Slocum, C. Siedenstrang, and S. Wegman. 1985. Restriction fragment length polymorphisms as probes for plant diversity and as tools for applied plant breeding. Plant Mol. Biol. 5 : 109-118.   DOI
32 Herrero, M. P. and R. R. Johnson. 1981. Drought stress and its effects on maize reproductive systems. Crop Sci. 21 (1) : 105-110.   DOI
33 Hoad, S. P., G. Russell, M. E. Lucas, and I. J. Bingham. 2001. The management of wheat, barley and oat root systems. Adv. Agron. 74 : 193-246.   DOI
34 ISAAA. http://www.isaaa.org.
35 Jones, 1999. Use of thermography for quantitative studies of spatial and temporal variation of stomatal conductance over leaf surfaces. Plant Cell Environ. 22 : 1043-1055.   DOI
36 Jones, H. G. 2007. Monitoring plant and soil water status: established and novel methods revisited and their relevance to studies of drought tolerance. J. Exp. Bot. 58 : 119-130.
37 Kerstiens, G. 1996. Cuticular water permeability and its physiological significance. J. Exp. Bot. 47 : 1813-1832.   DOI
38 Khodarahmpour, Z. 2011. Effect of drought stress induced by polyethylene glycol (PEG) on germination indices in corn (Zea mays L.) hybrids. Afr. J. Biotechnol. 10(79) : 18222-18227.
39 Kim, J. Y., J.-C. Moon, S.-B. Beak, Y.-U. Kwon, K. Song, and B.-M. Lee. 2014. Genetic improvement of maize by marker-assisted breeding. Korean J. Crop Sci. 59 (2) : 109-127.   DOI
40 Lande, R. and R. Thompson. 1990. Efficiency of marker assisted selection in the improvement of quantitative traits. Genetics 124(3) : 743-756.
41 Landi, P., S. Giuliani, S. Salvi, M. Ferri, R. Tuberosa, and M. C. Sanguineti. 2010. Characterization of root-yield-l.06, a major constitutive QTL for root and agronomic traits in maize across water regimes. J. Exp. Bot. 61(13) : 3553-3562.   DOI
42 Langridge, P. and M. P. Reynolds. 2015. Genomic tools to assist breeding for drought tolerance. Current Opinion in Biotechnology. 32 : 130-135.   DOI
43 Lawlor, D. W. and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant Cell Environ. 25 : 275-294.   DOI
44 Lebreton, C., V. Lazic-jancic, A. Steed, S. Pekic, and S. A. Quarrie. 1995. Identification of QTL for drought responses in maize and their use in testing causal relationships between traits. J. Exp. Bot. 46(7) : 853-865.   DOI
45 Lee, E. and W. F. Tracy. 2009. Modern Maize Breeding. In: Bennetzen and S. Hake (eds). Handbook of Maize; Vol. 2. Genetics and Genomics. Springer Science, New York, NY. pp. 141-162.
46 Li, L., V. Staden, and A. K. Jager. 1998. Effects of plant growth regulators on the antioxidant system in seedling of two maize cultivars subjected to water stress. Plant Growth Regul. 25(2) : 81-87.   DOI
47 Liu, Y., C. Subhash, J. Yan, C. Song, J. Zhao, and J. Li. 2011. Maize leaf temperature responses to drought: thermal imaging and quantitative trait loci (QTL) mapping. Environ. Exp. Bot. 71 : 158-165.   DOI
48 Messmer, R., Y. Fracheboud, M. Banziger, P. Stamp, and J. Ribaut. 2011. Drought stress and tropical maize: QTLs for leaf greenness, plant senescence, and root capacitance. Field Crops Res. 124 : 93-103.   DOI
49 Lu, Y., Z. Hao, C. Xie, J. Crossa, J.-L. Araus, S. Gao, B. S. Vivek, C. Magorokosho, S. Mugo, D. Makumbi, S. Taba, G. Pan, X. Li, T. Rong, S. Zhang, and Y. Xu. 2011. Large-scale screening for maize drought resistance using multiple selection criteria evaluated under water-stressed and well-watered environments. Field Crop Res. 124 : 37-45.   DOI
50 Mano, Y., M. Muraki, M. Fujimori, T. Takamizo, and B. Kindiger. 2005. Identification of QTL controlling adventitious root formation during flooding conditions in teosinte (Zea mays ssp. huehuetenangensis) seedlings. Euphytica. 142 : 33-42.   DOI
51 Metsker, M. L. 2010. Sequencing technologies - the next generation. Nat. Rev. Genet. 11(1) : 31-46.   DOI
52 Morizet, T., M. Pllucsck, and D. Togola. 1983. Drought tolerance in four varieties. Field Crops Abst. 39 : 306, 1986.
53 NeSmith, D. S. and J. T. Ritchie. 1992. Effects of soil water-deficits during tassel emergence on development and yield component of maize (Zea mays). Field Crops Res. 28 (3) : 251-256.   DOI
54 Obeng-Bio, E., M. Bonsu, K. Obeng-Antwi, and R. Akromah. 2011. Establishing the basis for drought tolerance in maize (zea mays L.) using some secondary traits in the field. Afr. J. Plant Sci. 5(12) : 702-709.
55 Opitz, N., A. Paschold, C. Marcon, W. A. Malik, C. Lanz, H.-P. Piepho, and F. Hocholdinger. 2014. Transcriptomic comoplexity in young maize primary roots in response to low water potentials. BMC genomics. 15 : 741.   DOI
56 Rajcan, I. and M. Tollenaar. 1999. Source-sink ratio and leaf senescence in maize. I. Dry matter accumulation and partitioning during the grain-filling period. Field Crop Res. 90 : 245-253.
57 Paterson, A. H., E. S. Lander, J. D. Hewitt, S. Peterson, S. Lincoln, and S. E. Tanksley. 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335 : 721-726.   DOI
58 Pelleschi, S., S. Guy, J. Kim, C. Pointe, A. Mahe, L. Barthes, A. Leonardi, and J. Prioul. 1999. Ivr2, a candidate gene for a QTL of vacuolar invertase activity in maize leaves. Gene-specific expression under water stress. Plant Mol. Biol. 39 : 373-380.   DOI
59 Poroyko, V., W. Spollen, L. Hejlek, A. Hernandez, M. LeNoble, G. Davis, H. Hguyen, G. Springer, R. Sharp, and H. Bohnert. 2007. Comparing regional transcript profiles from maize primary roots under well-watered and low water potential conditions. J. Exp. Bot. 58(2) : 279-289.   DOI
60 Ramadan, H. A., S. N. Al-Niemi, and T. T. Handan. 1985. Water stress, soil type and phosphorus effects on corn and soybean, I. Effect on growth. Iraqi. J. Agri. Sci. Sanco 3 : 137-144.
61 Ramanjulu, S. and D. Bartels. 2002. Drought- and desiccation-induced modulation of gene espression in plants. Plant Cell Environ. 25 : 141-151.   DOI
62 Reddy, A. R., K. V. Chaitanya, and M. Vivekanandan. 2004. Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161 : 1189-1202.   DOI
63 Rhoads, F. M. and J. M. Bennett. 1990. Corn. Chapter 19 in Irrigation of Agricultural Crops. pp. 569-596. ASA-CSSA-SSSA, Mono No. 30, B.A. Stewart and D.R. Nielsen (Eds.).
64 Sanguineti, M. C., R. Tuberosa, P. Landi, S. Salvi, M. Maccaferri, E. Casarini, and S. Conti. 1999. QTL analysis of drought-related traits and grain yield in relation to genetic variation for leaf abscisic acid concentration in field-grown maize. J. Exp. Bot. 50(337) : 1289-1297.   DOI
65 Ribaut, J. M., D. A. Hoisington, J. A. Deutsch, C. Jiang, and D. Gonzalez-de-Leon. 1996. Identification of quantitative trait loci under drought conditions in tropical maize. 1. Flowering parameters and the anthesis-silking interval. Theor. Appl. Genet. 92 : 905-914.   DOI
66 Richards, R. A. 2006. Physiological traits used in the breeding of new cultivars for water-scarce environments. Agric. Water Manage. 80 : 197-211.   DOI
67 Ruta, N., M. Liedgens, Y. Fracheboud, P. Stemp, and Z. Hund. 2010. QTLs for the elongation of axile and lateral roots of maize in response to low water potential. Theor. Appl. Genet. 120 : 621-631.   DOI
68 Sari-Gorla, M., P. Krajewski, N. Di Fonzo, M. Villa, and C. Frova. 1999. Genetic analysis of drought tolerance in maize by molecular markers. II. Plant height and flowering. Theor. Appl. Genet. 99 : 289-295.   DOI
69 Saruhan, N., A. Saglam, and A. Kadioglu. 2012. Salicylic acid pretreatment induces drought tolerance and delays leaf rolling by inducing antioxidant systems in maize genotypes. Acta. Physiol. Plant. 34 : 97-106.   DOI
70 Schussler, J. R. and M. E. Westgate. 1991. Maize kernel set at low water potential: II. Sensitivity to reduced assimilates at pollination. Crop Sci. 31 : 1196-1203.   DOI
71 Seo, Y, K. Park, E. Chang, S. Ryu, J. Park, and K. Kim. 2014. Effect of salicylic acid and abscisic acid on drought stress of waxy corn. Korean J. Crop Sci. 59(1) : 54-58.   DOI
72 Slafer, G. A., J. L. Araus, C. Royo, and L. F. G. Del Moral. 2005. Promising eco-physiological traits for genetic improvement of cereal yields in Mediterranean environments. Ann. Appl, Biol. 146 : 61-70.   DOI
73 Serraj, R. and T. R. Sinclair. 2002. Osmolyte accumulation: can it really increase crop yield under drought conditions? Plant Cell Environ. 25 : 333-341.   DOI
74 Sharp, R. E., V. Poroyko, L. G. Hejlek, W. G. Spollen, G. K. Springer, H. J. Bohnet, and T. Nguyen. 2004. Root growth maintenance during water deficits: physiology to functional genomics. J. Exp. Bot. 55 : 2343-2351.   DOI
75 Shaw, R. H. 1988. Climate requirement. Chapter 10 in corn and corn improvement. Third Edition. Pp. 609-638. ASA-CSSASSSA, Mono No. 18, G.F. Sprague and J.W. Dudley (Eds.). 986 pp.
76 Song, K., K.-H. Kim, H. C. Kim, J.-C. Moon, J. Y. Kim, S.-B. Baek, Y.-U. Kwon, and B.-M. Lee. 2015. Evaluation of drought tolerance in maize seedling using leaf rolling. Korean J. Crop Sci. 60(1) : 8-16.   DOI
77 Spollen, W., W. Tao, B. Valliyodan, K. Chen, L. Hejlek, J.-J. Kim, M. LeNoble, J. Zhu, H. Bohnert, D. Henderson, D. P. Schachtman, G. E. Davis, G. K. Springer, R. E. Sharp, and H. T. Nguyen. 2008. Spatial distribution of transcript changes in the maize primary root elongation zone at low water potential. BMC Plant Biol. 8(1) : 32.   DOI
78 Stuber, C. W., M. D. Edwards, and J. F. Wendel. 1987. Molecular marker-facilitated investigations of quantitative trait loci in maize. II. factors influencing yield and its component traits. Crop Sci. 27(4) : 639-648.   DOI
79 Tuberosa, R., M. C. Sanguineti, P. Landi, S. Salvi, E. Casarini, and S. Conti. 1998. RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of droughtstressed maize (Zea mays L.). Theor. Appl. Genet. 97 : 744-755.   DOI
80 Tuberosa, R., M. C. Sanguineti, P. Landi, M. M. Giuliani, S. Salvi, and S. Conti. 2002. Identification of QTLs for root characteristics in maize grown in hydroponics and analysis of their overlap with QTLs for grain yield in the field at two water regimes. Plant Mol. Biol. 48 : 697-712.   DOI
81 Tyerman, S. D., C. M. Niemietz, and H. Bramley. 2002. Plant aquaporins: multifunctional water and solute channels with expanding roles. Plant Cell Environ. 25 : 173-194.   DOI
82 Udomprasert, N., J. Kijjanon, K. Chusri-iam, and A. Machuay. 2005. Effects of water deficit at tasseling on photosynthesis, development, and yield of corn. Kasetsart J. (Nat. Sci.) 39 : 546-551.
83 Vargas, M., F. A. Eeuwijk, J. Crossa, and J. Ribaut. 2006. Mapping QTLs and QTL$\times$environment interaction for CIMMYT maize drought stress program using factorial regression and partial least squares methods. Theor. Appl. Genet. 112 : 1009-1023.   DOI
84 Vaughan, M. M., S. Christensen, E. A. Schmelz, A. Huffaker, H. J. McAuslane, H. T. Alborn, M. Romero, L. H. Allen, and P. E. A. Teal. 2015. Accumulation of terpenoid phytoalexins in maize roots is associated with drought tolerance. Plant Cell Environ. doi: 10.1111/pce.12482.   DOI
85 Vohra, M., J. Manwar, R. Manmode, S. Padgilwar, and S. Patil. 2014. Bioethanol production: Feedstock and current technologies. J. of Environ. Chem. Eng. 2(1) : 573-584.   DOI
86 Voothuluru, P., H. J. Thompson, S. A. Flint-Garcia, and R. E. Sharp. 2013. Genetic variability of oxidase oxalate activity and elongation in water-stressed primary roots of diverse maize and rice lines. Plant Signal. Behav. 8(3) : e23454.   DOI
87 Walter, A. and U. Shurr. 2005. Dynamics of leaf and root growth: endogenous control versus environmental impact. Ann. Not. 95 : 891-900.
88 Welcker, C., W. Sadok, G. Dignat, M. Renault, S. Salvi, A. Charcosset, and F. Tardieu. 2011. A common genetic determinism for sensitivities to soil water deficit and evaporative demand : meta-analysis of quantitative trait loci and introgression lines of maize. Plant physiol. 157 : 718-729.   DOI
89 Weerathaworn, P., A. Soldati, and P. Stamp. 1992. Anatomy of seedling roots of tropical maize (Zea mays L.) cultivars at low water supply. J. Exp. Bot. 43 : 1015-1021.   DOI
90 Welcker, C., B. Boussuge, C. Bencivenni, J. Ribaut, and F. Tardieu. 2007. Are source and sink strengths genetically linked in maize plants subjected to water deficit? A QTL study of the responses of leaf growth and of anthesis-silking interval to water deficit. J. Exp. Bot. 58(2) : 339-349.   DOI
91 Westgate, M. E. and J. S. Boyer. 1985. Osmotic adjustment and the inhibition of leaf, root, stem and silk growth at low water potentials in maize. Planta 164 : 540-549.   DOI
92 Westgate, M. E. and D. L. T. Grant. 1989. Water deficits and reproduction in maize: Response of the reproductive tissue to water deficits at anthesis and mild grainfill. Plant Physiol. 91 : 862-867.   DOI
93 Xiao, Y.-N., X.-H. Li, S.-H. Zhang, X.-D. Wang, M.-S. Li, and Y.-L. Zheng. 2004. Identification of quantitative trait loci (QTLs) for flowering time using SSR marker in maize under water stress. Korean J. Genetics. 26(4) : 405-413.
94 Xiao, Y. N., X. H. Li, M. L. George, M. S. Li, S. H. Zhang, and Y. L. Zheng. 2005. Quantitative trait locus analysis of drought tolerance and yield in maize in china. Plant Mol. Biol. Report. 23 : 155-165.   DOI
95 Ziyomo, C. and R. Bernardo. 2013. Drought tolerance in maize: Indirect selection through secondary traits versus genomewide selection. Crop Sci. 53 : 1269-1275.   DOI
96 Xue, Y., L. M. L. Warburton, M. Sawkins, X. Zhang, T. Setter, Y. Xu, P. Grudloyma, J. Gethi, J.-M. Ribaut, W. Li, X. Zhang, Y. Zheng, and J. Yan. 2013. Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. Theor. Appl. Gene. 126 : 2587-2596.   DOI
97 Zamaninejad, M., S. K. Khorasani, M. J. Moeini, and A. R. Heidarian. 2013. Effect of salicylic acid on morphological characteristics, yield and yield components of Corn (Zea mays L.) under drought condition. Euro. J. Exp. Bio. 3(2) : 153-161.
98 Zheng, J., J. Zhao, Y. Tao, J. Wang, Y. Liu, J. Fu, Y. Jin, P. Gao, J. Zhang, Y. Bai, and G. Wang. 2004. Isolation and analysis of water stress-induced genes in maize seedlings by subtractive PCR and cDNA macroarray. Plant Mol. Biol. 55(6) : 807-823.   DOI