Browse > Article
http://dx.doi.org/10.7740/kjcs.2015.60.2.190

Analysis of Morphological Characteristics Among Super Sweet Corn Inbred Lines  

Ko, Woo Ri (Division of Bio-resource Sciences, College of Agriculture and Life Science, Kangwon National University)
Choi, Hong-Jib (Gyeongsangbuk-do Agricultural Research and Extension Services)
Sa, Kyu Jin (Division of Bio-resource Sciences, College of Agriculture and Life Science, Kangwon National University)
Cho, Jin-Woong (Crop Science, College of Agriculture and Life Science, Chungnam National University)
Lee, Ju Kyong (Division of Bio-resource Sciences, College of Agriculture and Life Science, Kangwon National University)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.60, no.2, 2015 , pp. 190-196 More about this Journal
Abstract
We evaluated the morphological characteristics in 100 super sweet corn inbred lines, which were developed to breeding super sweet corn variety at Gyeongsangbuk-do Agricultural Research and Extension Services, by examining six quantitative and two qualitative characteristics. On the result of evaluation of two qualitative traits, most of inbred lines showed yellow (91 inbred lines) at seed color (QL1) and weak (68 inbred lines) at seedling vigor (QL2). In the survey of six quantitative traits, the average value for each trait indicated as follows: days of tasseling (QN1, 41.0 to 55.0 days), days of silking (QN2, 44.0 to 59.0 days), anthesis-silking interval (QN3, 2.0 to 7.0 days), tillering (QN4, 0.0 to 2.0), plant height (QN5, 96.0 to 187.0 cm) and ear height (QN6, 30.0 to 86.0 cm). In PCAs (principal component analysis) for 8 morphological characteristics, seedling vigor (QL2) and tillering (QN4) greatly contributed in negative direction and the days of tasseling (QN1) and days of silking (QN2) greatly contributed in positive direction on the first principal component. While, ear height (QN6) and plant height (QN5) contributed in positive direction on the second principal component. Thus these morphological traits, which were greatly contributed in the first and second principal components, might be considered to be useful for discrimination in 100 super sweet corn inbred lines. In our study, the results of morphological variation and PCAs for 100 super sweet corn inbred lines will be helpful for super sweet corn breeding programs such activities as planning crosses for hybrid and line development.
Keywords
super sweet corn; inbred line; morphological variation; principal component analysis;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Berger, R. D. and E. A. Wolf. 1974. Control of seed borne and soil borne mycoses of 'Florida sweet' corn by seed treatment. Plant Dis. Pptr. 58 : 922-923.
2 Cai, H., Q. Chu, L. Yuan, J. Liu, X. Chen, F. Chen, G. Mi, and F. Zhang. 2012. Identification of quantitative trait loci for leaf area and chlorophyll content in maize (Zea mays) under low nitrogen and low phosphorus supply. Mol. Breed. 30 : 251-266.   DOI
3 Chang, E. H., K. J. Sa, J. H. Kim, and J. K. Lee. 2013. Analysis of morphological characteristics among popcorn inbred lines. Korean J. Crop Sci. 58(3) : 267-273.   DOI
4 Chapman, S. C. and G. O. Edmeades. 1999. Selection improves drought tolerance in tropical maize populations: II. Direct and correlated responses among secondary traits. Crop Science 39 : 1315-1324.   DOI
5 Jung, T. W., S. L. Kim, H. G. Moon, B. Y. Son, S. J. Kim, and S. K. Kim. 2005. Major characteristics related on eating quality and classification of inbred lines of waxy corn. Korean J. Crop Sci. 50(S) : 161-166.
6 Khorasani, S. K., K. Mostafavi, E. Zandipour, and A. Heidarian. 2011. Multivariate analysis of agronomic traits of new corn hybrids (Zea mays L.). International Journal of AgriScience. 1(6) : 314-322.
7 Lee, S. S., S. J. Lee, and D. Y. Kim. 1987. Quality of sweet corn stored at different temperatures and duration. Korean J. Crop Sci. 32(2) : 137-143.
8 Lee, S. S., S. K. Yang, and S. B. Hong 2007. Optimum plant populations of a super sweet corn hybrid at different planting dates. Korean J. Crop Sci. 52(3) : 334-340.
9 Nielsen, J. P. and L. Munck. 2003. Evaluation of malting barley quality using exploratory data analysis. I. Extraction of information from micromalting data of spring and winter barley. J. Cereal Sci. 38 : 173-180.   DOI
10 Ordas, B., V. M. Rodríguez, M. C. Romay, R. A. Malvar, A. Ordás, and P. Revulla. 2010. Adaptation of super-sweet maize to cold conditions: mutant x genotype interaction. Journal of Agricultural Science 148 : 401-405.   DOI
11 Park, J. Y., K. J. Sa, K. J. Park, and J. K. Lee. 2014. Analysis of morphological characteristics for normal maize inbred lines. Korean J. Crop Sci. 59(3) : 312-318.   DOI
12 Ryu, S. H., J. Y. Park, N. K. Huh, and H. K. Min. 2001. Relationship between genentic distance and hybrid performance of black waxy corn (Zea mays L.). Korea J. Breed. Sci. 33(2) : 95-103.
13 Seo, J. M., S. H. Yun, and S. S. Lee. 2002. Performance of imported sweet corn hybrids in Korea. Korean J. Crop Sci. 47(4) : 305-310.
14 Zheng, Z. P., X. H. Liu, Y. B. Huang, X. Wu, C. He, and Z. Li. 2012. QTLs for days to silking in a recombinant inbred line maize population subjected to high and low nitrogen regimes. Genet. Mol. Res. 11(2) : 790-798.   DOI   ScienceOn