Browse > Article
http://dx.doi.org/10.7740/kjcs.2014.59.3.245

Variation of Fractionated Protein Content by Solubility in Korean Local Sorghum Seed  

Park, Sei Joon (Institute of Ecological Phytochemistry, Hankyong National University)
Park, Jun Young (Institute of Ecological Phytochemistry, Hankyong National University)
Hwang, Su Min (Department of Plant Life and Environmental Science, Hankyong National University)
Seo, Myung Chul (Crop Environment research division, NICS, RDA)
Kim, Tae Wan (Crop Environment research division, NICS, RDA)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.59, no.3, 2014 , pp. 245-251 More about this Journal
Abstract
Sorghum seed is traditionally used as health supplements and the secondary food mixed with rice in Korea. While the research of reserve protein in sorghum seed have been carried out in many countries used as major food, much less is known about reserve proteins of Korean local sorghum seeds. To obtain protein characteristics in 20 Korean local sorghum seed, quantitative content of reserve protein was determined after fractionation by modified 'Osbone' method and ${\alpha}$-kafirin of prolamin was determined by SDS-PAGE. Mean albumin, globulin, prolamin and glutelin contents based on total seed protein content of 20 Korean local sorghum seed were 6.2%, 0.9%, 57.9% and 35.1%, respectively. Sorghum cultivar with high prolamin were 'Whin-susu', 'Whin-Chalsusu', 'Whanggeum-Chalsusu', and 'Daepungshushu'. Sorghum cultivar with high ${\alpha}$-kafirin were 'Whin-susu', 'Geumsan-Chalsusu', 'Whin-Chalsusu', and 'Jangmok-susu'. Among the 20 varieties, 'Whin-susu' and 'Whin-Chalsusu' were selected as high ${\alpha}$-kafirin and prolamin sorghum cultivar, which showed 64.5 and 71.9% of prolamin contents, respectively.
Keywords
sorghum; seed; albumin; globulin; prolamin; glutelin;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Anyango, J. O., N. Duneas, J. R. N. Taylor, and J. Taylor. 2012. Physicochemical Modification of Kafirin Microparticles and Their Ability To Bind Bone Morphogenetic Protein-2 (BMP-2), for Application as a Biomaterial. J Agric and Food Chem 60 : 8419-8426.   DOI
2 Belton, P. S. and J. R. N. Taylor. 2004. Sorghum and millets: protein sources for Africa. Trends in Food Science & Technology 15 : 94-98.   DOI
3 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72 : 248-54.   DOI   ScienceOn
4 Camargo Filho, I., D. A. G. Cortez, T. Ueda-Nakamura, C. V. Nakamura, and B. P. Dias Filho. 2008. Antiviral activity and mode of action of a peptide isolated from Sorghum bicolor. Phytomedicine 15 : 202-208.   DOI
5 Duodu, K. G., J .R. N. Taylor, P. S. Belton, and B. R. Hamaker. 2003. Factors affecting sorghum protein digestibility. J Cereal Sci 38 : 117-131.   DOI   ScienceOn
6 Dykes, L. and L. W. Rooney. 2006. Sorghum and millet phenols and antioxidants. J Cereal Sci 44 : 236-251.   DOI   ScienceOn
7 Emmambux, N. M. and J. R. N. Taylor. 2003. Sorghum kafirin interaction with various phenolic compounds. J Sci Food Agric 83 : 402-407.   DOI
8 FAO. 1995. FAO Food and Nutrition. No. 27. Sorghum and millets in human nutrition. FAO, Viale delle Terme di Caracalla, 00100 Rome, Italy.
9 Farrokhi, N., J. P. Whitelegge, and J. A. Brusslan. 2008. Plant peptides and peptidomics. Plant Biotechnol J. 6 : 105-34.   DOI
10 Hamaker, B. R., A. A. Mohamed, J. E. Habben, C. P. Huang, and B. A. Larkins. 1995. Efficient procedure for extracting maize and sorghum kernel proteins reveals higher prolamin contents than the conventional method. Cereal chem 72 : 583-588.
11 Hartmann, R. and H. Meisel. 2007. Food-derived peptides with biological activity: from research to food applications. Curr Opin Biotechnol 18 : 163-9.   DOI   ScienceOn
12 Jeon, H. S., I. M. Chung, K. H. Ma, E. H. Kim, S. J. Young, and J. K. Ahn. 2011. Analysis of Phenolic Compounds in Sorghum, Foxtail Millet and Common Millet. Korean J Crop Sci 56 : 361-74.   과학기술학회마을   DOI
13 Kumar, T., I. Dweikat, S. Sato, Z. Ge, N. Nersesian, H. Chen, T. Elthon, S. Bean, B. P. Ioerger, M. Tilley, and T. Clemente. 2012. Modulation of kernel storage proteins in grain sorghum (Sorghum bicolor (L.) Moench). Plant Biotechnol J. 10 : 533-44.   DOI
14 Kamath, V., S. Niketh, A. Chandrashekar, and P. S. Rajini. 2007. Chymotryptic hydrolysates of ${\alpha}$-kafirin, the storage protein of sorghum (Sorghum bicolor) exhibited angiotensin converting enzyme inhibitory activity. Food Chem 100 : 306-311.   DOI   ScienceOn
15 Ki, H. Y., E. S. Seong, B. K. Ghimire, I. M. Chung, S. S. Kwon, E. J. Goh, K. Heo, M. J. Kim, J. D. Lim, D. Lee, and C. Y. Yu. 2009. Antioxidant and antimicrobial activities of crude sorghum extract. Food Chem 115 : 12341-239.
16 Ko, J. Y., S. B. Song, J. S. Lee, J. R. Kang, M. C. Seo, B. G. Oh, D. Y. Kwak, M. H. Nam, H. S. Jeong, and K. S. Woo. 2011. Changes in Chemical Components of Foxtail Millet, Proso Millet, and Sorghum with Germination. J Korean Soc Food Sci Nutr 40(8) : 1128-1135.   과학기술학회마을   DOI
17 Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227 : 680-5.   DOI   ScienceOn
18 Lee, H. K., I. G. Hwang, H. Y. Kim, K. S. Woo, S. H. Lee, S. H. Woo, J. S. Lee, and H. S. Jeong. 2010. Physicochemical Characteristic and Antioxidant Activites of Cereals and Legumes in Korea. J Korean Soc Food Sci Nutr 39(9) : 1399-1404.   과학기술학회마을   DOI
19 Mincoff, P. C., D. A. Garcia Cortez, T. Ueda-Nakamura, C. V. Nakamura, and B. P. Dias Filho. 2006. Isolation and characterization of a 30kD antifungal protein from seeds of Sorghum bicolor. Research in Microbiology 157 : 326-332.   DOI
20 Oria, M. P., B. R. Hamaker, J. D. Axtell, and C. P. Huang. 2000. A highly digestible sorghum mutant cultivar exhibits a unique folded structure of endosperm protein bodies. Proc Natl Acad Sci USA 97 : 5065-70.   DOI   ScienceOn
21 Oria, M. P., B. R. Hamaker, and J. M. Schull. 1995. In vitro protein digestibility of developing and mature sorghum grain in relation to -kafirin disulfide crosslinking. J Cereal Sci 22 : 85-93.   DOI
22 Osborne, T. B. 1924. The vegetable proteins. 2nd. Longman. Gree and Co. London.
23 Park, S. H. and S. R. Bean. 2003. Investigation and optimization of the factors influencing sorghum protein extraction. J Agric Food Chem 51 : 7050-4.   DOI
24 Seo, M. S., J. Y. Ko, S. B. Song, J. S. Lee, J. R. Kang, D. Y. Kwak, B. G. Oh, Y. N. Yoon, M. H. Nam, H. S. Jeong, and K. S. Woo. 2011. Antioxidant Compounds and Activities of Foxtail Millet, Proso Millet and Sorghum with Different Pulverizing Methods. J. Korean Soc. Food Sci. Nutr. 40 : 790-7.   과학기술학회마을   DOI   ScienceOn
25 Taylor, J., S. R. Bean, B. P. Ioerger, and J. R. N. Taylor. 2007. Preferential binding of sorghum tannins with ${\gamma}$-kafirin and the influence of tannin binding on kafirin digestibility and biodegradation. J Cereal Sci. 46 : 22-31.   DOI
26 Youssef, A. M. 1988. Extractability, fractionation and nutritional value of low and high tannin sorghum proteins. Food Chem 63 : 325-329.
27 Wong, J. H., D. B. Marx, J. D. Wilson, B. B. Buchanan, P. G. Lemaux, and J. F. Pedersen. 2010. Principal component analysis and biochemical characterization of protein and starch reveal primary targets for improving sorghum grain. Plant Science 179 : 598-611.   DOI