Browse > Article
http://dx.doi.org/10.7740/kjcs.2013.58.4.432

Comparison of Seed Viability Among 42 Species Stored in a Genebank  

Lee, Ho-Sun (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA)
Jeon, Young-Ah (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA)
Lee, Young-Yi (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA)
Lee, Sok-Young (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA)
Kim, Yeon-Gyu (National Agrobiodiversity Center, National Academy of Agricultural Science, RDA)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.58, no.4, 2013 , pp. 432-438 More about this Journal
Abstract
This study was conducted to compare seed viability among 42 species after ten years of storage in the midterm storage complex ($4^{\circ}C$, 30-40% RH) at the National Agrobiodiversity Center (NAC) Korean genebank maintained by the Rural Development Administration (RDA), Republic of Korea and to suggest the relative seed longevity and suitable monitoring intervals. The germination data from initial tests and after ten years of storage were compared to measure changes in viability during storage. The decline in seed viability varied greatly among seeds from -11.5% for Triticum sp. to 80% for melon. Coriander, crowndaisy, safflower, cosmos, Chinesebellflower, waxgourd, melon, castorbean, Welch-onion, hollyhock, wild barley, and tallfescue showed significant decreases in viability of 34.2%, 73.4%, 36.5%, 30.0%, 40.2%, 71.3%, 80.0%, 65.9%, 45.5%, 51.4%, 53.0%, and 33.5%, respectively. Gardenpea, soybean, perilla, onion, wild rice, Italian-ryegrass, and pepper showed a 15-30% decline in viability, while the viability of morningglory, adzukibean, maize, and Capsicum sp. decreased by 15% to 5%. Chicory, radish, Chinese-cabbage, bottlegourd, watermelon, cucumber, pumpkin, Cucurbita sp., groundnut, kidneybean, clubwheat, sesame, wheat, Triticum sp., rice, barley, orchardgrass, buckwheat, and wild tomato showed changes in viability of <5%. The changes in storage viability also varied within families. The wild types of rice and barley showed rapid viability loss and presented different aspects from cultivars. Since seed viability of species, classified as index 1 or 2, showed germination losses >15% after ten years of storage, a viability test should be conducted with five year intervals, while species with germination loss of <15% (in index 3 or 4) can be retested at ten year intervals.
Keywords
seed longevity; seed quality; monitoring interval; genebank; active collection;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Ellis, R. H. and T. D. Hong. 2007. Quantitative response of the longevity of seed of twelve crops to temperature and moisture in hermetic storage. Seed Science and Technology 35 : 423-444.   DOI
2 FAO/IPGRI. 1994. Gene bank standards. Food and Agricultural Organization of the United Nations/International Plant Genetic Resources Institute, Rome, Italy. p.46.
3 Harrington, J. F. 1972. Seed storage and longevity. pp. 145-240 In: Seed biology. vol.III. by Kozlowski, T.T. ed. Academic Press, NY.
4 Hay, F., J. Klin, and R. Probert. 2006. Can a post-harvest ripening treatment extend the longevity of Rhododendron L. seeds? Scientia Horticulturae 111 : 80-83.   DOI   ScienceOn
5 Hendry, G. A., F. K. Thompson, C. J. Moss, E. Edwards, and P. C. Thorpe. 1994. Seed persistence : a correlation between seed longevity in the soil and ortho-dihydroxyphenol concentration. Functional Ecology 8 : 658-664.   DOI   ScienceOn
6 ISTA. 2005. International Rules for Seed Testing. International Seed Testing Association, Bassersdorf, Switzerland.
7 Kochanek, J., Y. M. Buckley, R. J. Probert, S. W. Adkins, and K. J. Steadman. 2010. Pre-zygotic parental environment modulates seed longevity. Austral Ecology 35 : 837-848.   DOI   ScienceOn
8 Kueneman, E. A. 1983. Genetic control of seed longevity in soybeans. 1983. Crop Science 23 : 5-8.   DOI
9 Miura, K., S. Y. Lin, M. Yano, and T. Nagamine. 2002. Mapping quantitative trait loci controlling seed longevity in rice (Oryza sativa L.). Theoretical and Applied Genetics 104 : 981-986.   DOI   ScienceOn
10 Avrami, M. 1941. Kinetics of phase change III. Granulation, phase change and microstructure. J. of Chem. Physics 9 : 177-184.   DOI
11 Baskin, C. C. and J. M. Baskin. 1988. Germination ecophysiology of herbaceous plant species in a temperature region. Am. J. Bot. 75 : 286-305.   DOI   ScienceOn
12 Copeland, L. O. and M. B. McDonald. 2001. Principles of seed science and technology. 4th. Kluwer Academic Publishers, Massachusetts, USA. pp. 190-230.
13 Daws, M. I., E. Lydall, P. Chmielarz, O. Leprince, S. Matthews, C. A. Thanos, and H. W. Pritchard. 2004. Developmental heat sum influences recalcitrant seed traits in Aesculus hippocastanum across Europe. The New Phytologist 162(1) : 157-166.   DOI   ScienceOn
14 Parzies, H. K., W. Spoor, and R. A. Ennos. 2000. Genetic diversity of barley landrace accessions (Hordeum vulgare ssp. vulgare) conserved for different lengths of time in ex situ gene banks. Heredity 84 : 476-486.   DOI   ScienceOn
15 Nagel, M. and A. Borner. 2010. The longevity of crop seeds stored under ambient conditions. Seed Science Research 20 : 1-12.   DOI   ScienceOn
16 Nagel, M., M. A. R. Arif, M. Rosenhauer, and A. Borner. 2010. Longevity of seeds-intraspecific differences in the Gastersleben genebank collections. Tagungsband 60. Tagung der Vereinigung der Pflanzenzuchter und Saatgutkaufleute Osterreichs, 24-26 November 2009, Raumberg-Gumpenstein. pp. 179-181.
17 Niedzielski, M., C. Walters, W. Luczak, L. M. Hill, L. J. Wheeler, and J. Puchalski. 2009. Assessment of variation in seed longevity within rye, wheat and the intergenetic hybrid triticale. Seed Science Research 19 : 213-224.   DOI   ScienceOn
18 Porsild, A. E. and C. R. Harrington. 1967. Lupinus articus Wats. grown from seeds of the Pleistocene Age. Science 158 : 113-114.   DOI   ScienceOn
19 Probert, R. J., M. I. Daws, and F. R. Hay. 2009. Ecological correlates of ex situ seed longevity : a comparative study on 195 species. Annals of Botany 104 : 57-69.   DOI   ScienceOn
20 Rincker, C. M. 1981. Long-term subfreezing storage of forage crop seeds. Crop Science 21 : 424-427.   DOI
21 Rao, N. K., J. Hanson, M. E. Dulloo, K. Ghosh, D. Nowell, and M. Larinde. 2006. Manual of seed handling in genebanks. Handbooks for genebanks no. 8. Rome, Bioversity International.
22 Walters, C. 1998. Understanding of mechanism and kinetics of seed aging. Seed Science Research 8 : 223-244.
23 Roberts, E. H. and R. H. Ellis. 1982. Physiological, ultrastructural and metabolic aspects of seed viability. pp. 465-485. In: The physiology and biochemistry of seed development, dormancy and germination. by Khan, A. A. ed. Amsterdam, Elsevier Biomedical Press.
24 Roberts, E. H. and R. H. Ellis. 1989. Water and seed survival. Annals of Botany 63 : 39-52.
25 Sivori E., F. Nakayama, and E. Cigliano. 1968. Germination of Achirs seed (Canna sp.) approximately 550 years old. Nature 219 : 1269-1270.   DOI   ScienceOn
26 Walters, C., L. M. Wheeler, and J. M. Grotenhuis. 2005. Longevity of seeds stored in a genebank : species characteristics. Seed Science Research 15 : 1-20.   DOI   ScienceOn
27 Wang, Y., C. Mu, Y. Hou, and X. Li. 2008. Optimum harvest time of Vicia cracca in relation to high seed quality during pod development. Crop Science 48 : 709-715.   DOI   ScienceOn
28 Wester, H. V. 1973. Further evidence of age of ancient viable Lotus seeds from Pulantien Deposit, Manchuria. Horticultural Science 5 : 371-377.