Browse > Article
http://dx.doi.org/10.7740/kjcs.2013.58.2.119

Relationship of Transformation Efficiency and Metabolites Induced in Korean Soybean Cotyledons Treated with Sonication  

Song, Kitae (Department of Life Science, Dongguk Univ.-Seoul)
Yim, Won Cheol (Department of Plant Biotechnology, Dongguk Univ.-Seoul)
Jung, Gun-Ho (National Institute of Crop Science, RDA)
Kim, Sun Lim (National Institute of Crop Science, RDA)
Kwon, Young-Up (National Institute of Crop Science, RDA)
Lee, Byung-Moo (Department of Life Science, Dongguk Univ.-Seoul)
Publication Information
KOREAN JOURNAL OF CROP SCIENCE / v.58, no.2, 2013 , pp. 119-127 More about this Journal
Abstract
The interaction between Agrobacterium and soybean has been studied at the transcriptome level but not at the metabolic level. However, it is necessary to investigate the difference in metabolites between susceptible and non-susceptible cultivars for high efficiency transformation. We investigated the difference in metabolites from sonicated soybean cotyledons of Korean cultivars and Bert cultivar. To identify difference in metabolites, sonicated extracts were analysed by Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR/MS). The soybean cultivars were classified by susceptibility using green fluorescent protein expression. We found a difference in metabolites between the high susceptible and low susceptible cultivars. The FT-ICR/MS experimental m/z data of different metabolites were compared with theoretical m/z in KNApSAcK database. The candidate list was made using KNApSAcK and focused on phenolic compounds. These candidate metabolites are speculated to influence factors in the interaction. This list of candidates may be useful to investigate the interaction between Agrobacterium and plants to increase transformation efficiency.
Keywords
soybean; metabolites; interaction; Agrobacterium; FT-ICR/MS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zaltsman, A., A. Krichevsky, S. V. Kozlovsky, F. Yasmin, and V. Citovsky. 2010. Plant defense pathways subverted by Agrobacterium for genetic transformation. Plant signaling & behavior. 5(10) : 1245-1248.   DOI
2 Zeng, P., D. A. Vadnais, Z. Zhang, and J. C. Polacco. 2004. Refined glufosinate selection in Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill]. Plant cell reports. 22(7) : 478-482.   DOI   ScienceOn
3 Zerback, R., K. Dressler, and D. Hess. 1989. Flavonoid compounds from pollen and stigma of Petunia hybrid, Inducers of the vir region of the Agrobacterium tumefaciens Ti plasmid. Plant Science. 62(1) : 83-91.   DOI   ScienceOn
4 Shinbo, Y., Y. Nakamura, M. Altaf-Ul-Amin, H. Asahi, K. Kurokawa, M. Arita, K. Saito, D. Ohta, D. Shibata, and S. Kanaya. 2006. KNApSAcK: A Comprehensive Species- Metabolite Relationship Database. Plant Metabolomics. 57 : 165-181.   DOI
5 Spencer, P. A. and G. H. N. Towers. 1988. Specificity of signal compounds detected by Agrobacterium tumefaciens. Phytochemistry. 27(9) : 2781-2785.   DOI   ScienceOn
6 Stachel, S. E., E. Messens, M. V. Montagu, and P. Zambryski. 1985. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature. 318(6047) : 624-629.   DOI
7 Stougaard, J. 2000. Regulators and regulation of legume root nodule development. Plant physiology. 124(2) : 531-540.   DOI   ScienceOn
8 Strohalm, M., D. Kavan, P. Novak, M. Volny, and V. Havlicek. 2010. mMass 3: a cross-platform software environment for precise analysis of mass spectrometric data. Analytical chemistry. 82(11) : 4648-4651.   DOI   ScienceOn
9 Taguri, T., T. Tanaka, and I. Kouno. 2006. Antibacterial spectrum of plant polyphenols and extracts depending upon hydroxyphenyl structure. Biological & pharmaceutical bulletin. 29(11) : 2226-2235.   DOI   ScienceOn
10 Tang, W. 2003. Additional virulence genes and sonication enhance Agrobacterium tumefaciens-mediated loblolly pine transformation. Plant cell reports. 21(6) : 555-562.
11 Tautenhahn, R., C. Bottcher, and S. Neumann. 2007. Annotation of LC/ESI-MS Mass Signals. Bioinformatics Research and Development. 4414 : 371-380.   DOI   ScienceOn
12 Titulaer, M. K., I. Siccama, L. J. Dekker, A. L. C. T. van Rijswijk, R. M. A. Heeren, P. A. Sillevis Smitt, and T. M. Luider. 2006. A database application for pre-processing, storage and comparison of mass spectra derived from patients and controls. BMC bioinformatics. 7 : 403.   DOI
13 Veena, H. Jiang, R. W. Doerge, and S. B. Gelvin. 2003. Transfer of T-DNA and Vir proteins to plant cells by Agrobacterium tumefaciens induces expression of host genes involved in mediating transformation and suppresses host defense gene expression. The Plant journal. 35(2) : 219-236.   DOI   ScienceOn
14 Trick, H. N. and J. J. Finer. 1998. Sonication-assisted Agrobacterium-mediated transformation of soybean [Glycine max (L.) Merrill] embryogenic suspension culture tissue. Plant Cell Reports. 17(6-7) : 482-488.   DOI   ScienceOn
15 Trick, H. N. and J. J. Finer. 1997. SAAT: sonication-assisted Agrobacterium-mediated transformation. Transgenic Research. 6(5) : 329-336.   DOI   ScienceOn
16 Tzfira, T. and V. Citovsky. 2002. Partners-in-infection: host proteins involved in the transformation of plant cells by Agrobacterium. Trends in cell biology. 12(3) : 121-129.   DOI   ScienceOn
17 Yan, B., M. S. S. Reddy, G. B. Collins, and R. D. Dinkins. 2000. Agrobacterium tumefaciens- mediated transformation of soybean [Glycine max (L.) Merrill.] using immature zygotic cotyledon explants. Plant Cell Reports. 19(11) : 1090-1097.   DOI   ScienceOn
18 Long, S. R. 1996. Rhizobium symbiosis nod factors in perspective. The Plant cell. 8(10) : 1885-1898.   DOI   ScienceOn
19 Matilla, M. A., M. Espinosa-Urgel, J. J. Rodríguez-Herva, J. L. Ramos, and M. I. Ramos-Gonzalez. 2007. Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome biology. 8(9) : R179.   DOI
20 Meurer, C. A., R. D. Dinkins, and G. B. Collins. 1998. Factors affecting soybean cotyledonary node transformation. Plant Cell Reports. 18(3-4) : 180-186.   DOI   ScienceOn
21 Nakamura, Y. et al., 2007. Differential metabolomics unraveling light/dark regulation of metabolic activities in Arabidopsis cell culture. Planta. 227(1) : 57-66.   DOI
22 Oikawa, A., Y. Nakamura, T. Ogura, A. Kimura, H. Suzuki, N. Sakurai, Y. Shinbo, D. Shibata, S. Kanaya, and D. Ohta. 2006. Clarification of pathway-specific inhibition by Fourier transform ion cyclotron resonance/mass spectrometrybased metabolic phenotyping studies. Plant physiology. 142(2) : 398-413.   DOI   ScienceOn
23 Negishi, O. and T. Ozawa. 2000. Inhibition of enzymatic browning and protection of sulfhydryl enzymes by thiol compounds. Phytochemistry. 54(5) : 481-487.   DOI   ScienceOn
24 Nester, E. W. 1995. Plant Signaling in Agrobacterium- Mediated Transformation Advances in Molecular Genetics of Plant-Microbe Interactions. Current Plant Science and Biotechnology in Agriculture 21 : 3-11.
25 Ohta, D., D. Shibata, and S. Kanaya. 2007. Metabolic profiling using Fourier-transform ion-cyclotron-resonance mass spectrometry. Analytical and bioanalytical chemistry. 389(5) : 1469-1475.   DOI
26 Olhoft, P. M., L. E. Flagel, C. M. Donovan, and David A Somers. 2003. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta. 216(5) : 723-735.
27 Olhoft P and D. Somers. 2001. L-Cysteine increases Agrobacteriummediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Reports 20(8) : 706-711.   DOI   ScienceOn
28 Oparka, K. J., A. G. Roberts, S. S. Cruz, P. Boevink, D. A. M. Prior, and A. Smallcombe. 1997. Using GFP to study virus invasion and spread in plant tissues. Nature. 388 : 401-402.   DOI   ScienceOn
29 Owens, L. D. and A. C. Smigocki. 1988. Transformation of Soybean Cells Using Mixed Strains of Agrobacterium tumefaciens and Phenolic Compounds. Plant physiology. 88(3) : 570-573.   DOI   ScienceOn
30 Parker, J. E., M. J. Coleman, V. Szabo, L. N. Frost, R. Schmidt, E. A. van der Biezen, T. Moores, C. Dean, M. J. Daniels, and J. D. Jones. 1997. The Arabidopsis downy mildew resistance gene RPP5 shares similarity to the toll and interleukin-1 receptors with N and L6. The Plant cell. 9(6) : 879-894.   DOI   ScienceOn
31 Hartmann, A., M. Schmid, D. van Tuinen, and G. Berg. 2009. Plant-driven selection of microbes. Plant and Soil. 321(1-2) : 235-257.   DOI
32 Santarém, E. R., H. N. Trick, J. S. Essig, and J. J. Finer. 1998. Sonication-assisted Agrobacterium-mediated transformation of soybean immature cotyledons optimization of transient expression. Plant Cell Reports. 17(10) : 752-759.   DOI   ScienceOn
33 Schmutz, J. et al. 2010. Genome sequence of the palaeopolyploid soybean. Nature. 463(7278) : 178-183.   DOI   ScienceOn
34 Gunstone, F. 2001. Soybeans pace boost in oilseed production. Inform. 11 : 1287-1289.
35 Hegde, V. R., P. Dai, M. Chu, M. Patel, R. Bryant, J. Terracciano, P. R. Das, and M. S. Puar. 1997. Neurokinin receptor inhibitors: fermentation, isolation, physico-chemical properties, structure and biological activity. The Journal of antibiotics. 50(12) : 983-991.   DOI
36 Hinchee, M. A. W., D. V. Connor-Ward, C. A. Newell, R. E. McDonnell, S. J. Sato, C. S. Gasser, D. A. Fischhoff, D. B. Re, R. T. Fraley, and R. B. Horsch. 1988. Production of Transgenic Soybean Plants Using Agrobacterium-Mediated DNA Transfer. Nature Biotechnology. 6(8) : 915-922   DOI
37 Hirai, M. Y., M. Yano, D. B. Goodenowe, S. Kanaya, T. Kimura, M. Awazuhara, M. Arita, T. Fujiwara, and Kazuki Saito. 2004. Integration of transcriptomics and metabolomics for understanding of global responses to nutritional stresses in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America. 101(27) : 10205-10210.   DOI   ScienceOn
38 Holton, T. A. and E. C. Cornish. 1995. Genetics and Biochemistry of Anthocyanin Biosynthesis. The Plant cell. 7(7) : 1071-1083.   DOI   ScienceOn
39 Horn, D. M., R. A. Zubarev, and F. W. McLafferty. 2000. Automated reduction and interpretation of high resolution electrospray mass spectra of large molecules. Journal of the American Society for Mass Spectrometry. 11(4) : 320-332.   DOI   ScienceOn
40 Iijima, Y. et al. 2008. Metabolite annotations based on the integration of mass spectral information. The Plant journal. for cell and molecular biology. 54(5) : 949-962   DOI   ScienceOn
41 Joubert, P., D. Beaupere, A. Wadouachi, S. Chateau, R. S. Sangwan, and B. S. Sangwan-Norreel. 2004a. Effect of phenolic glycosides on Agrobacterium tumefaciens virH gene induction and plant transformation. Journal of natural products. 67(3) : 348-351.   DOI   ScienceOn
42 Joubert, P., D. Beaupere, A. Wadouachi, S. Chateau, R. S. Sangwan, and B. S. Sangwan-Norreel. 2004b. Effect of phenolic glycosides on Agrobacterium tumefaciens virH gene induction and plant transformation. Journal of natural products. 67(3) : 348-351.   DOI   ScienceOn
43 Kado, C. I. and M. G. Heskett. 1970. Selective media for isolation of Agrobacterium, Corynebacterium, Erwinia, Pseudomonas, and Xanthomonas. Phytopathology. 60(6) : 969-976.   DOI   ScienceOn
44 Ko, T.-S., S. Lee, S. K. Farrand, and S. S. Korban. 2004. A partially disarmed vir helper plasmid, pKYRT1, in conjunction with 2,4-dichlorophenoxyactic acid promotes emergence of regenerable transgenic somatic embryos from immature cotyledons of soybean. Planta. 218(4) : 536-541.   DOI
45 Koes, R. E., F. Quattrocchio, and J. N. M. Mol. 1994. The flavonoid biosynthetic pathway in plants. Function and evolution. BioEssays. 16(2) : 123-132.   DOI   ScienceOn
46 Latha, S. and A. Mahadevan. 1997. Role of rhizobia in the degradation of aromatic substances. World Journal of Microbiology and Biotechnology. 13(6) : 601-607.   DOI   ScienceOn
47 Baulcombe, D. C., S. Chapman, and S. Santa Cruz. 1995. Jellyfish green fluorescent protein as a reporter for virus infections. The Plant journal. for cell and molecular biology. 7(6) : 1045-1053.   DOI   ScienceOn
48 Brencic, A., A. Eberhard, and S. C. Winans. 2004. Signal quenching, detoxification and mineralization of vir geneinducing phenolics by the VirH2 protein of Agrobacterium tumefaciens. Molecular microbiology. 51(4) : 1103-1115.   DOI   ScienceOn
49 Berthelot, K., D. Buret, B. Guerin, D. Delay, J. Negrel, and F. M. Delmotte. 1998. vir-Gene-inducing activities of hydroxycinnamic acid amides in Agrobacterium tumefaciens. Phytochemistry. 49(6) : 1537-1548.   DOI   ScienceOn
50 Bhattacharya, A., P. Sood, and V. Citovsky. 2010. The roles of plant phenolics in defence and communication during Agrobacterium and Rhizobium infection. Molecular plant pathology. 11(5) : 705-719.
51 Chalfie, M., Y. Tu, G. Euskirchen, W. W. Ward, and D. C. Prasher. 1994. Green fluorescent protein as a marker for gene expression. Science. 263(5148) : 802-805.   DOI
52 Clauser, K. R., P. Baker, and A. L. Burlingame. 1999. Role of accurate mass measurement (+/- 10 ppm) in protein identification strategies employing MS or MS/MS and database searching. Analytical chemistry. 71(14) : 2871-2882.   DOI   ScienceOn
53 Cohen, M. F., Y. Sakihama, and H. Yamasaki. 2001. Roles of plant flavonoids in interactions with microbes. From protection against pathogens to the mediation of mutualism. Recent research developments in plant physiology : 157-173.
54 Cushnie, T. P. T., and A. J. Lamb. 2005. Antimicrobial activity of flavonoids. International journal of antimicrobial agents. 26(5) : 343-356.   DOI   ScienceOn
55 Delzer, B. W., D. A. Somers, and J. H. Orf. 1990. Agrobacterium tumefaciens Susceptibility and Plant Regeneration of 10 Soybean Genotypes in Maturity Groups 00 to II. Crop Science. 30(2) : 320-322.   DOI
56 Ditt, R. F., E W Nester, and L. Comai. 2001. Plant gene expression response to Agrobacterium tumefaciens. Proceedings of the National Academy of Sciences of the United States of America. 98(19) : 10954-10959.   DOI   ScienceOn
57 Gamborg, O. L., R. A. Miller, and K. Ojima. 1968. Nutrient requirements of suspension cultures of soybean root cells. Experimental Cell Research. 50(1) : 151-158.   DOI   ScienceOn
58 Donaldson, P. A. and D. H. Simmonds. 2000. Susceptibility to Agrobacterium tumefaciens and cotyledonary node transformation in short-season soybean. Plant Cell Reports. 19 : 478-484.   DOI   ScienceOn
59 Ferrazzano, G. F., I. Amato, A. Ingenito, A. De Natale, and A. Pollio. 2009. Anti-cariogenic effects of polyphenols from plant stimulant beverages (cocoa, coffee, tea). Fitoterapia. 80(5) : 255-262.   DOI   ScienceOn
60 Gage, D. J., T. Bobo, and S. R. Long. 1996. Use of green fluorescent protein to visualize the early events of symbiosis between Rhizobium meliloti and alfalfa (Medicago sativa). Journal of bacteriology. 178(24) : 7159-7166.
61 Gelvin, S. B. 2000. Agrobacterium and plant genes involved in T-DNA transfer and integration. Annual review of plant physiology and plant molecular biology. 51 : 223-256.   DOI   ScienceOn
62 Aharoni, A., C. H. Ric de Vos, H. A. Verhoeven, C. A. Maliepaard, G. Kruppa, R. Bino, and D. B. Goodenowe. 2002. Nontargeted metabolome analysis by use of Fourier Transform Ion Cyclotron Mass Spectrometry. Omics. a journal of integrative biology. 6(3) : 217-234.   DOI   ScienceOn